Symmetry Breaking in an Extended O(2) Model (arXiv:2312.17739)

Leon Hostetler ¹, Ryo Sakai ², Jin Zhang ³, Alexei Bazavov ¹, and Yannick Meurice ⁴

¹ Michigan State University

²Jij Inc.

³Chongqing University

⁴The University of Iowa

January 9, 2024

QuLAT Collaboration

Outline

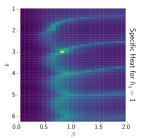
- Motivation
- 2 The Extended-O(2) Model
 - ullet The $h_q o\infty$ limit
 - Phase Diagram
- 3 Phase Diagram at Finite- h_q
- 4 Summary & Outlook

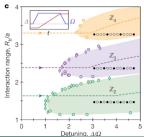
Outline

- Motivation
- 2 The Extended-O(2) Model
 - ullet The $h_q o\infty$ limit
 - Phase Diagram
- 3 Phase Diagram at Finite- h_q
- 4 Summary & Outlook

Motivation

- The O(2) model is a non-trivial limit of the Abelian-Higgs model
- ② Can add a symmetry-breaking term to break the O(2) symmetry down to \mathbb{Z}_q
 - Study the role of symmetry in spin systems
 - ▶ Study \mathbb{Z}_q approximations of continuous U(1)/O(2) symmetry
 - ▶ Relevant for "field digitization" of gauge theories
- Playground for tensor methods
- Early results suggested a phase diagram similar to that found in Rydberg atom chains (Bernien et. al. Nature 551, 579-584 (2017), Keesling et. al. Nature 568, 207 (2019))





Outline

- Motivation
- 2 The Extended-O(2) Model
 - ullet The $h_q o\infty$ limit
 - Phase Diagram
- 3 Phase Diagram at Finite- h_q
- 4 Summary & Outlook

The Extended-O(2) Model

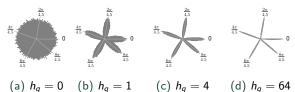
• We consider an extended-O(2) model in 2D with action

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

- When $h_q = 0$, this is the classic XY model, with a BKT transition
- When $h_q \to \infty$, the continuous angle φ is forced into the discrete values

$$\varphi_0 \le \varphi_{x,k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- ▶ For $q \in \mathbb{Z}$, this is the ordinary q-state clock model with \mathbb{Z}_q symmetry
- ► For $q \notin \mathbb{Z}$, this defines an interpolation of the clock model for noninteger q



The $h_q \to \infty$ limit

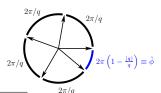
• In the limit $h_a \to \infty$, we can replace the action with

$$S_{\mathsf{ext-}q} = -\sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}})$$

 We directly restrict the previously continuous angles to the discrete values

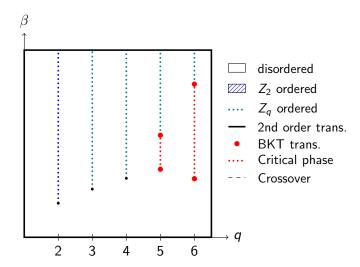
$$\varphi_0 \le \varphi_{\mathsf{x},k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$
- For $q \notin \mathbb{Z}$, divergence from ordinary clock model behavior is driven by the introduction of a "small angle":



Leon Hostetler (MSU) Symmetry Breaking

The $h_q \to \infty$ limit



TRG results at large volume

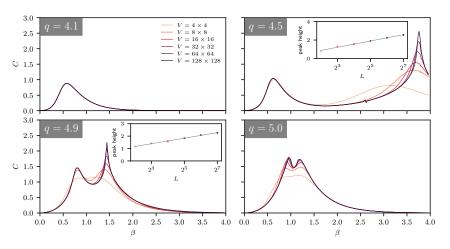
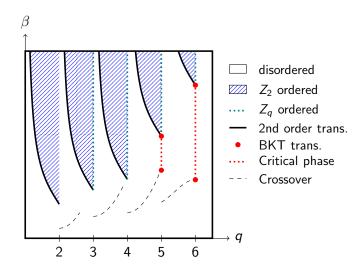


Figure: Specific heat results for the extended-q clock model from TRG obtained by Ryo for q = 4.1, 4.5, 4.9, and 5.0 at volumes from $2^2 \times 2^2$ up to $2^7 \times 2^7$.

6/21

Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024

The $h_q \to \infty$ limit



PRD 104 (5), 054505 and PoS(LATTICE2021)353

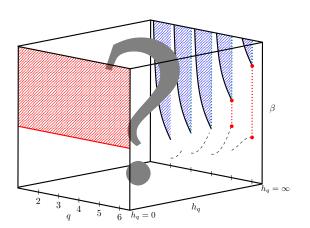
ㅁㅏ (레ㅏ (ㅌㅏ (ㅌㅏ 된)ㅌ 쒸٩)

Outline

- Motivation
- 2 The Extended-O(2) Model
 - The $h_q o \infty$ limit
 - Phase Diagram
- 3 Phase Diagram at Finite- h_q
- 4 Summary & Outlook

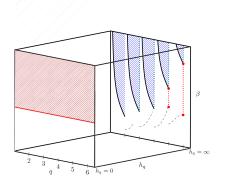
Phase Diagram

$$S = -\sum_{ ext{x},\mu} \cos{(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}})} - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

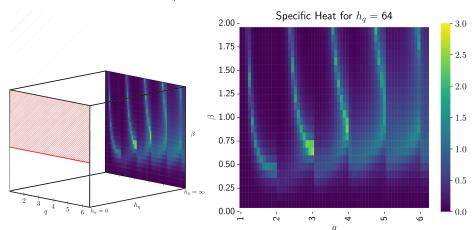


Phase Diagram at Finite- h_a

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$



$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$



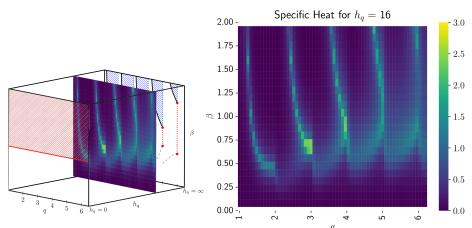
arXiv:2312.17739 and PoS(LATTICE2023)223

Jan. 9, 2024

10 / 21

Leon Hostetler (MSU)

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

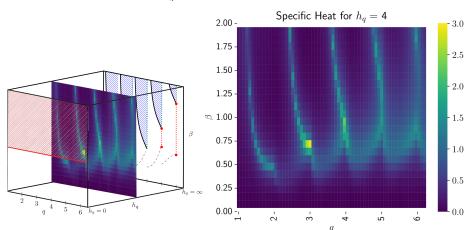


arXiv:2312.17739 and PoS(LATTICE2023)223

◆ロト ◆問ト ◆ヨト ◆ヨト 事1 = から○

Leon Hostetler (MSU)

$$S_{\mathsf{ext-}O(2)} = -\sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) - h_q \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$



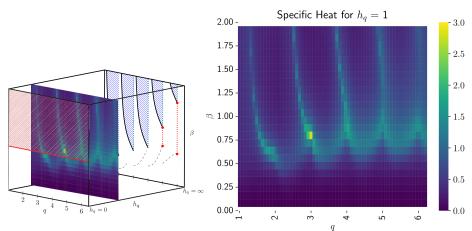
arXiv:2312.17739 and PoS(LATTICE2023)223

<ロ > 4 回 > 4 回 > 4 豆 > 4 豆 > 豆 | 豆 め Q (~)

Leon Hostetler (MSU)

Symmetry Breaking

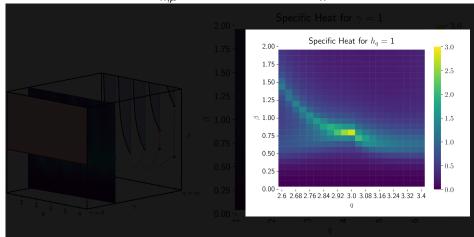
$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$



arXiv:2312.17739 and PoS(LATTICE2023)223

Leon Hostetler (MSU)

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$



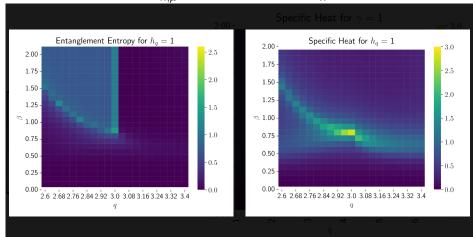
arXiv:2312.17739 and PoS(LATTICE2023)223

- 4 ロ ト 4 昼 ト 4 夏 ト 夏 1章 り Q (C)

14 / 21

Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024

$$S_{\mathsf{ext-}O(2)} = -\sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) - h_q \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$



14 / 21

Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024

Noninteger q with TRG

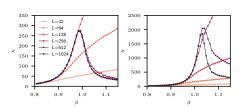


Figure: Magnetic susceptibility from TRG for q=4.1 near the small- β peak for $h_q=0.01$ (left) and $h_q=0.001$ (right). For sufficiently large volumes, the magnetic susceptibility peaks plateau—implying a crossover.

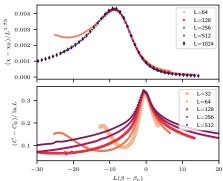


Figure: Data collapse of the magnetic susceptibility (top) and specific heat (bottom) from TRG near the large- β peak for q=3.9 and $h_q=1$. Consistent with Ising phase transition.

Integer q with MC

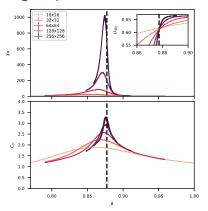


Figure: Magnetic susceptibility (top) and specific heat (bottom) from MC with q=2 and $h_q=0.1$. Looks like an Ising phase transition.

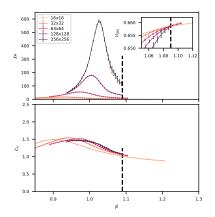
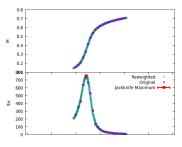
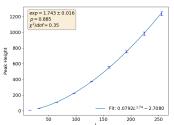


Figure: Magnetic susceptibility (top) and specific heat (bottom) from MC with q=4 and $h_q=0.1$. Looks like a BKT phase transition.

Integer q: Finite Size Scaling

$$\begin{aligned} \frac{dU_M}{d\beta} \bigg|_{max} &= U_0 + U_1 L^{1/\nu} \\ C_V |_{max} &= C_0 + C_1 L^{\alpha/\nu} \\ \langle M \rangle |_{infl} &= M_0 + M_1 L^{-\beta/\nu} \\ \chi_M |_{max} &= \chi_0 + \chi_1 L^{\gamma/\nu} \\ F(\vec{q})|_{max} &= F_0 + F_1 L^{2-\eta}. \end{aligned}$$





Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024 17 / 21

Integer q: Finite Size Scaling

q	α	β	γ	δ	η	ν	β_c
2	0	1/8	7/4	15	1/4	1	$\frac{1}{2} \ln(1 + \sqrt{2})$
3	1/3	1/9	13/9	14	4/15	5/6	$\frac{2}{3} \ln(1 + \sqrt{3})$
4	0	1/8	7/4	15	1/4	1	$\ln(1+\sqrt{2})$

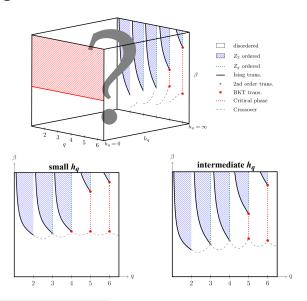
Table: The critical exponents (for reference) for the integer q clock model for q=2,3,4. The clock model is the $h_q\to\infty$ limit of the Extended-O(2) model.

q	h _q	ν	α	β	γ	η
2	0.1	1.044(53)	0.021(18)	0.319(94)	1.859(96)	0.287(13)
2	1.0	1.022(71)	-0.010(16)	N/A	1.78(12)	0.251(14)
3	0.1	0.658(24)	0.354(35)	N/A	1.291(45)	0.3651(93)
3	1.0	0.809(26)	0.311(21)	N/A	1.411(36)	0.295(16)
4	0.1	2.49(89)	-0.30(12)	0.76(87)	4.3(1.5)	0.2570(85)
4	1.0	1.20(14)	-0.162(19)	0.78(61)	2.09(24)	0.2532(93)
5	0.1	N/A	N/A	N/A	N/A	0.2716(72)
5	1.0	N/A	N/A	N/A	N/A	0.2653(94)
6	0.1	N/A	N/A	N/A	N/A	0.2880(86)
6	1.0	N/A	N/A	N/A	N/A	0.2654(92)

Table: Critical exponents obtained via finite-size scaling.

18 / 21

Phase Diagram



Outline

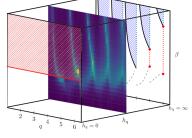
- Motivation
- 2 The Extended-O(2) Model
 - The $h_q \to \infty$ limit
 - Phase Diagram
- 3 Phase Diagram at Finite- h_q
- 4 Summary & Outlook

Summary & Outlook

• We looked at an extended O(2) model with parameters β , h_q , and q

$$S = -\sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - h_q \sum_{x} \cos(q\varphi_x)$$

- ① The symmetry-breaking term allows us to explore the role of symmetry and to study the $U(1) \to \mathbb{Z}_q$ approximations and to consider also noninteger q
- This model may be a good candidate for analog quantum simulation



Rich phase diagram with crossovers, second-order phase transitions of various universality classes and BKT transitions Thank you!

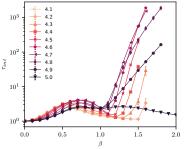
Additional Slides:

Previous Work on the Extended-O(2) Model

- José, Kadanoff, Kirkpatrick, and Nelson, Phys. Rev. B 16, 1217 (1977).
- Landau, Journal of Magnetism and Magnetic Materials 31-34, 1115 (1983)
- Hu and Ying, Physica A: Statistical Mechanics and its Applications 140, 585 (1987)
- Bramwell, Holdsworth, and Rothman, Modern Physics Letters B 11, 139 (1997)
- Calabrese and Celi, Phys. Rev. B 66, 184410 (2002)
- Rastelli, Regina, and Tassi, Phys. Rev. B 69, 174407 (2004)
- Rastelli, Regina, and Tassi, Phys. Rev. B 70, 174447 (2004)
- Taroni, Bramwell, and Holdsworth, Journal of Physics: Condensed Matter 20, 275233 (2008)
- Nguyen and Ngo, Advances in Natural Sciences: Nanoscience and Nanotechnology 8, 015013 (2017)
- Chlebicki and Jakubczyk, Phys. Rev. E 100, 052106 (2019)
- Butt, Jin, Osborn, and Saleem, (2022), arXiv:2205.03548

TRG for Extended-q-state Clock Model

- In the Monte Carlo approach, we use a Markov chain importance-sampling algorithm to generate equilibrium configurations
 - ▶ Monte Carlo has difficulty sampling this model appropriately at $\beta>1$ for $q\notin\mathbb{Z}$
 - ► Integrated autocorrelation time explodes, and we have to perform billions of heatbath sweeps already on a 4 × 4 lattice
 - Studying this model on larger lattices with Monte Carlo is challenging



- Tensor renormalization group (TRG) approach can be used instead
 - We validate TRG against Monte Carlo in the regime accessible to Monte Carlo
 - ▶ Then we use TRG to explore lattice sizes and β -values beyond the reach of Monte Carlo

Algorithm Developments Needed for Extended-O(2) Model

- ullet In the $h_a o\infty$ limit, the DOF could be treated as discrete
 - ▶ Which means we could use an MCMC heatbath algorithm
 - We could use a TRG method for large volumes
- The model is more difficult to study at finite h_q
- For finite h_q , the DOF are continuous
 - MCMC heatbath is not an option, so we're left with the Metropolis, which suffers from low acceptance rates and leads to large autocorrelations in this model
 - lacktriangle Furthermore, our TRG method was only designed for the $h_q o \infty$ limit
- We needed to make some algorithmic developments
 - ► We implemented a *biased Metropolis heatbath algorithm*¹⁸ (BMHA) which is designed to approach heatbath acceptance rates
 - ► To explore large volumes, Ryo Sakai implemented a Gaussian quadrature method

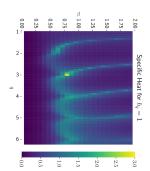
4/16

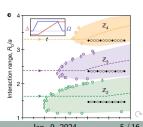
Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024

¹⁸A. Bazavov and B. A. Berg, PRD 71, 114506 (2005) < □ > < ♂ > < ≧ > < ≧ > < ≥ ≥ ≥ ≥ ≥ < ∞ < ∞

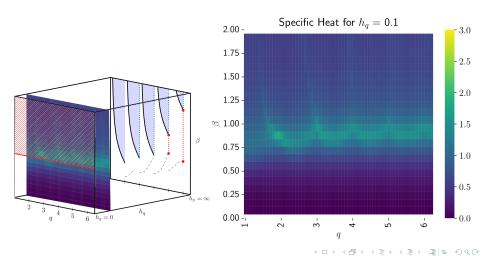
Connections to Quantum Simulation

- Field digitization in quantum simulation
 - Can approximate U(1) by \mathbb{Z}_a
 - Need to optimize the approximation
 - It is useful to have a continuous family of models that interpolate among the different q
- 2 The extended-O(2) model shows interesting behavior already on very small lattices making it a good test case for analog simulation
- Quantum simulation of similar models with a continuously tunable parameter have been done with Rydberg atoms (Bernien et. al. Nature 551, 579-584 (2017), Keesling et. al. Nature 568, 207 (2019))
 - ► The resulting phase diagram (right) shows similarities to the phase diagram of the extended-O(2) model at finite h_a .



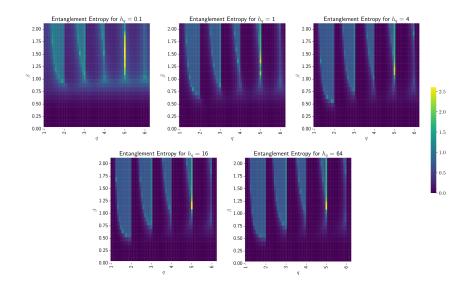


$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$



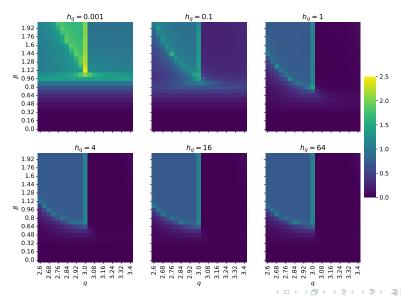
Leon Hostetler (MSU)

Entanglement Entropy from TRG with L = 1024



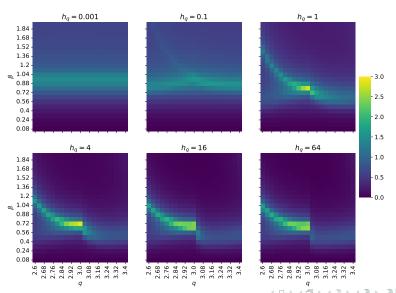
Entanglement Entropy from TRG with L = 1024

Entanglement Entropy near q = 3



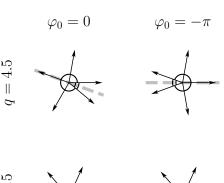
Specific Heat from TRG with L = 1024

Specific Heat near q = 3

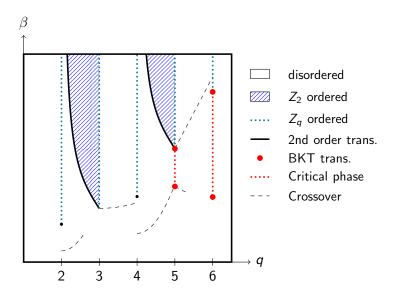


Choice of φ_0

- ullet Choice of $arphi_0$ can change the DOF in the model
- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$



Phase diagram for $h_q=\infty$ and $\varphi_0=-\pi$



Placement of β

• One can define the model as

$$S = -eta \sum_{x,\mu} \cos\left(arphi_{x+\hat{\mu}} - arphi_{x}
ight) - h_{q} \sum_{x} \cos(qarphi_{x})$$

where β is multiplying the first term like a field-theoretic coupling. Then the Boltzmann factor is e^{-S}

ullet Alternatively, one can factor eta out front and define the model as

$$S = -\sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - h_q' \sum_x \cos(q\varphi_x)$$

with Boltzmann factor $e^{-\beta S}$, where β is the inverse temperature

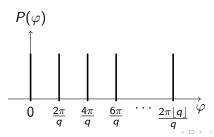
- ullet The two definitions are related by $h_q'=h_q/eta$
- ullet We have used both definitions, however, the Monte Carlo results shown in these slides are from the definition with eta factored out front

• In the ordinary clock model, we have the energy function

$$S = -\sum_{\langle x,y\rangle} \cos(\varphi_x - \varphi_y)$$

- The angles $\varphi_x^{(k)}$ are selected discretely as $\varphi_0 \leq \varphi_x^{(k)} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$ • When $\beta = 0$ and with $\varphi_0 = 0$, the spins are selected uniformly from a
- ullet When eta=0 and with $arphi_0=0$, the spins are selected uniformly from a "Dirac comb"

$$P_{q,\varphi_0=0}^{clock}(\varphi) \sim \sum_{k=0}^{\lfloor q \rfloor} \delta\left(\varphi - \frac{2\pi k}{q}\right)$$



• In the Extended-O(2) model, we have the energy function

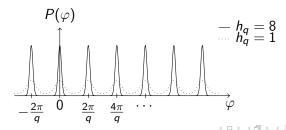
$$S = -\sum_{\langle x,y
angle} \cos(arphi_x - arphi_y) - h_q \sum_x \cos(q arphi_x)$$

• The angles φ_x are now selected continuously in

$$\varphi_0 \le \varphi \in \mathbb{R} < \varphi_0 + 2\pi$$

• When $\beta = 0$ and with $\varphi_0 = 0$, the spins are selected from a distribution

$$P_{q,arphi_0}^{extO2}(arphi) \sim e^{h_q\cos(qarphi)}$$



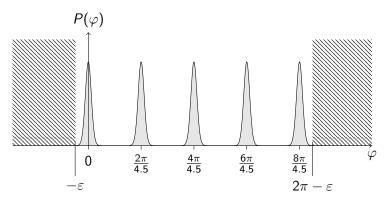


Figure: To recover the Dirac comb of the clock model distribution in the $h_q \to \infty$ limit, the angle domain must be shifted by some ε so that the histogram includes all relevant peaks.

ullet To match the clock model in the $h_q o \infty$ limit, it should be sufficient to choose arepsilon such that

$$P_{q,\varphi_0}^{extO2}(\varphi) \xrightarrow[h_q \to \infty]{} P_{q,\varphi_0}^{clock}(\varphi)$$

where for the clock model, angles are selected from $[\varphi_0, \varphi_0 + 2\pi)$, but for the Extended-O(2) model, they are selected from $[\varphi_0 - \varepsilon, \varphi_0 - \varepsilon + 2\pi)$

• In our case, we use $\varphi_0 = 0$, and choose

$$\varepsilon = \pi \left(1 - \frac{\lfloor q \rfloor}{q} \right)$$

so that the $\lceil q \rceil$ peaks of the distribution $P_{q,\varphi_0}^{extO2}(\varphi)$ are centered in the domain $[-\varepsilon, 2\pi - \varepsilon)$

◆ロト ◆部ト ◆きト ◆きト 連1= から○