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Motivation

@ The O(2) model is a non-trivial limit of the Abelian-Higgs model
@ Can add a symmetry-breaking term to break the O(2) symmetry
down to Zg

» Study the role of symmetry in spin systems

» Study Z, approximations of continuous U(1)/O(2) symmetry
» Relevant for “field digitization” of gauge theories

© Playground for tensor methods

@ Early results suggested a phase diagram similar to that found in
Rydberg atom chains (Bernien et. al. Nature 551, 579-584 (2017),
Keesling et. al. Nature 568, 207 (2019))
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The Extended-O(2) Model
o We consider an extended-O(2) model in 2D with action
Sext-0(2) = — Y _ €08(0xi s — px) — hg ¥ _ cos(qpx)

X,
@ When hg = 0, this is the classic XY model, with a BKT transition

@ When hy; — oo, the continuous angle ¢ is forced into the discrete

values
2wk
Y0 < Px .k = s < o+ 2w

» For q € Z, this is the ordinary g-state clock model with Z, symmetry
» For g ¢ Z, this defines an interpolation of the clock model for

noninteger g
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The hg — oo limit
@ In the limit hy — oo, we can replace the action with
Sext-g = — Z COS(‘PH—# — ¥x)
Xy

@ We directly restrict the previously continuous angles to the discrete
values

2wk
<P0§<Px,k=T < o +2m

@ We choose ¢ =0, i.e. ¢ € [0,27), but we also investigate g = —7
e For g ¢ Z, divergence from ordinary clock model behavior is driven by
the introduction of a “small angle”:

21 /q
/ \% ;
ZW/QK
27' /q
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The hg — oo limit

: L1 disordered

’ 7] Z, ordered

: Z, ordered

’ — 2nd order trans.
: : : e BKT trans.

: . : Critical phase

: : o --- Crossover

: : : : : q

PRD 104 (5), 054505 and PoS(LATTICE2021)353
Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024 5/21



TRG results at large volume
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Figure: Specific heat results for the extended-q clock model from TRG obtained

by Ryo for g = 4.1, 4.5, 4.9, and 5.0 at volumes from 22 x 22 up to 27 x 27.
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The hg — oo limit
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Phase Diagram

S == cos(pxtp—Px) = hg Y cos(qpy)
X, 1 X

SONNNNNRNRNNRENNNNNRE
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Phase Diagram at Finite-h,

Sext-O(2) = Z COS(QOX-I—;AL — Px
X,

arXiv:2312.17739 and PoS(LATTICE2023)223
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Specific Heat from TRG with L = 1024 and h, = 64

Sext—O(Z) = - z COS(‘PX—I—/AL - QDX) - hq Z COS(q(pX)

X,

Specific Heat for h, = 64
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Specific Heat from TRG with L = 1024 and h, = 16

Sext—O(Z) = - z COS(‘PX—I—/AL - QDX) - hq Z COS(q(pX)

X7/"L

Specific Heat for h, = 16
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Specific Heat from TRG with L = 1024 and h, = 4

Sext—O(Z) = - z COS(‘PX—I—/AL - QDX) - hq Z COS(q(pX)

X,
Specific Heat for h, = 4
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Specific Heat from TRG with L = 1024 and h, =1

Sext-O(2) = - Z COS(QDX—HAL - QOX) - hq Z COS(q(pX)

X7/"L

Specific Heat for h, = 1
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Specific Heat from TRG with L = 1024 and h, =1

Sex'c—O(2) = - Z COS(S‘DX—I—;AL - 9‘9X) - hq Z COS(q(,oX)

X,

Specific Heat for h, = 1
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Specific Heat from TRG with L = 1024 and h, =

q

Sex'c—O(2) = - Z COS(‘PX—I—/? - QOX) - hq Z COS(qch)
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Noninteger g with TRG
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Figure: Magnetic susceptibility from
TRG for g = 4.1 near the small-§ peak
for hg = 0.01 (left) and hg = 0.001
(right). For sufficiently large volumes,
the magnetic susceptibility peaks
plateau—implying a crossover.

(x = x0)/L"T™®

(C—Co)/InL

-30 —20 —-10 0 10 20
L(B = Be)

Figure: Data collapse of the magnetic
susceptibility (top) and specific heat
(bottom) from TRG near the large-3
peak for g = 3.9 and hy = 1. Consistent
with Ising phase transition.
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Integer g with MC
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Figure: Magnetic susceptibility (top)
and specific heat (bottom) from MC
with ¢ =2 and hq = 0.1. Looks like

an Ising phase transition.
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Figure: Magnetic susceptibility (top)
and specific heat (bottom) from MC
with g =4 and hq = 0.1. Looks like
a BKT phase transition.
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Integer g: Finite Size Scaling
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Integer g: Finite Size Scaling

q a B ol n v Be

2 0 1/8 7/4 15 1/4 1 [ Iin(1+Vv2)
3] 1/3 1/9 13/9 14 4/15 5/6 | 2In(1+3)
4 0o 1/8 7/4 15 1/4 1 In(1+ +/2)

Table: The critical exponents (for reference) for the integer g clock model for
g =2,3,4. The clock model is the h; — oo limit of the Extended-O(2) model.

q ] hq | v a B ¥ n

2 | 0.1 || 1.044(53) | 0.021(18) | 0.310(94) | 1.850(96) | 0.287(13)
2 | 1.0 || 1.022(71) | -0.010(16) N/A 1.78(12) | 0.251(14)
3| 0.1 || 0.658(24) | 0.354(35) N/A 1.291(45) | 0.3651(93)
3 | 1.0 || 0.809(26) | 0.311(21) N/A 1.411(36) | 0.295(16)
4 [ 01| 249(89) | -0.30(12) | 0.76(87) | 4.3(1.5) | 0.2570(85)
4| 1.0 || 1.20(14) | -0.162(19) | 0.78(61) | 2.09(24) | 0.2532(93)
5 01 N/A NJA N/A N/A 0.2716(72)
5 1.0 N/A N/A N/A N/A 0.2653(94)
6 | 01 N/A N/A N/A N/A 0.2880(86)
6 | 1.0 N/A N/A N/A N/A 0.2654(92)

Table: Critical exponents obtained via finite-size scaling.
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Phase Diagram
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Summary & Outlook

@ We looked at an extended O(2) model with parameters 3, hq, and q

S == cos(pxri— Px) = hg > cos(qex)

X1

@ The symmetry-breaking term allows
us to explore the role of symmetry
and to study the U(1) — Zq ap-
proximations and to consider also
noninteger q

© This model may be a good candi-
date for analog quantum simulation

@ Rich phase diagram with crossovers, second-order phase transitions of
various universality classes and BKT transitions
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TRG for Extended-g-state Clock Model

@ In the Monte Carlo approach, we use a Markov chain
importance-sampling algorithm to generate equilibrium configurations

» Monte Carlo has difficulty sampling
this model appropriately at § > 1
forq ¢ Z

> Integrated autocorrelation time ex-
plodes, and we have to perform bil-
lions of heatbath sweeps already on
a 4 x 4 lattice

» Studying this model on larger lat-
tices with Monte Carlo is challenging

T T T
0.0 0.5 1.0 1.5 2.0
B

@ Tensor renormalization group (TRG) approach can be used instead
» We validate TRG against Monte Carlo in the regime accessible to

Monte Carlo

» Then we use TRG to explore lattice sizes and [-values beyond the

reach of Monte Carlo

Leon Hostetler (MSU) Symmetry Breaking
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Algorithm Developments Needed for Extended-O(2) Model

@ In the hy — oo limit, the DOF could be treated as discrete

» Which means we could use an MCMC heatbath algorithm
» We could use a TRG method for large volumes

@ The model is more difficult to study at finite hg
@ For finite hq, the DOF are continuous
» MCMC heatbath is not an option, so we're left with the Metropolis,
which suffers from low acceptance rates and leads to large
autocorrelations in this model
» Furthermore, our TRG method was only designed for the hg — oo limit
@ We needed to make some algorithmic developments
» We implemented a biased Metropolis heatbath algorithm'® (BMHA)
which is designed to approach heatbath acceptance rates
» To explore large volumes, Ryo Sakai implemented a Gaussian
quadrature method

8A. Bazavov and B. A. Berg, PRD 71, 114506 (2005)
Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024 4/16



Connections to Quantum Simulation

@ Field digitization in quantum simulation
® Can approximate U(1) by Z,
® Need to optimize the approximation
@ It is useful to have a continuous family of
models that interpolate among the different g

HHHHHHHHH
mmmmmmmmm
ooooooooo

@ The extended-O(2) model shows interesting
behavior already on very small lattices making
it a good test case for analog simulation

© Quantum simulation of similar models with a
continuously tunable parameter have been done

1 = Py 10§ 189 dYadg

0€-

with Rydberg atoms (Bernien et. al. Nature o -
S5, 570350 GO, Kesing o 31 Nawre | =
568, 207 (2019)) <5 o
» The resulting phase diagram (right) shows %::
similarities to the phase diagram of the g 2 e o L
extended-O(2) model at finite hq. S *; """----;;;;;;;;;o_z_

Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024 5/16



Specific Heat from TRG with L = 1024 and h, = 0.1

Sex1:—O(2) = - Z COS(QDX—HAL - ‘PX) - hq Z COS(q(pX)

X7/"L

Specific Heat for o, = 0.1
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Entanglement Entropy from TRG with L = 1024

Entanglement Entropy for /i, = 0.1

Entanglement Entropy for h, = 1

Entanglement Entropy for h, = 4

Entanglement Entropy for /, = 16

Entanglement Entropy for /, = 64 10

0.0
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Entanglement Entropy from TRG with L = 1024

Entanglement Entropy near g =3

hg=0.1
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Specific Heat from TRG with L = 1024

Specific Heat near g =3
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Choice of g
@ Choice of g can change the DOF in the model
@ We choose pg =0, i.e. ¢ € [0,27), but we also investigate g = —7

o =20 o= —T

4.5

9.5
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Phase diagram for hy; = oo and ¢g = —7
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Placement of (5

@ One can define the model as

S=-p Zcos ((pxﬂq — ) — hq Z cos(qpx)

X5
where 5 is multiplying the first term like a field-theoretic coupling.
Then the Boltzmann factor is e~

@ Alternatively, one can factor 8 out front and define the model as

S=-— Z COos (@X—i—ﬁ - SOX) - h/q Z Cos(qwx)
X, [b X

with Boltzmann factor e #%, where 3 is the inverse temperature
@ The two definitions are related by hy = hq/3

@ We have used both definitions, however, the Monte Carlo results
shown in these slides are from the definition with 3 factored out front

Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024 12/16



The Need to Shift the Angles: A Subtlety

@ In the ordinary clock model, we have the energy function

=— ) cos(iox — ¥y)
(x.y)
(K (k)

@ The angles ¢y’ are selected discretely as g < px ' = % < o+ 27
@ When § =0 and with g = 0, the spins are selected uniformly from a

“Dirac comb” al
q
27k
clock
Pisiale) ~ 30 (o~ )

P(»)
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The Need to Shift the Angles: A Subtlety

@ In the Extended-O(2) model, we have the energy function

S=- Z cos(px — ¢y) — hg Z cos(gpx)
(xw) x

@ The angles ¢, are now selected continuously in
o<l peR <o+ 27

@ When 8 = 0 and with ¢g = 0, the spins are selected from a
distribution

P§X4};02(§0) ~ ehq cos(qy)
»$0

Leon Hostetler (MSU) Symmetry Breaking Jan. 9, 2024

14/16



The Need to Shift the Angles: A Subtlety

P()

Figure: To recover the Dirac comb of the clock model distribution in the hy — oo
limit, the angle domain must be shifted by some ¢ so that the histogram includes
all relevant peaks.
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The Need to Shift the Angles: A Subtlety

@ To match the clock model in the hy — oo limit, it should be sufficient
to choose ¢ such that

PextOZ

e () —— Pgloc(v)

hq*)OO q,%0

where for the clock model, angles are selected from [pg, vo + 27), but
for the Extended-O(2) model, they are selected from
[po — &, 0 — € + 2m)

@ In our case, we use @9 = 0, and choose

c=n(1-12)

so that the [g| peaks of the distribution ngég)z(go) are centered in
the domain [—¢,271 — ¢)
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