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© Introduction
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Quantum Chromodynamics (QCD)

The theory of the strong interaction between color-charged particles

It is a non-Abelian gauge theory with symmetry group SU(3)

@ The action is

—f (. 1 v
f

@ Vacuum expectation value of observable O can be written as path
integral -
_ | DADY Dy O[A 4,y 5]

o) - -
) [ DADY Dy eiSIAvY]

@ How to deal with this?
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Lattice QCD

@ Regularize the theory by T W

discretizing 4D spacetime

@ Define quark fields on the lattice = P - -
sites and gauge fields on the a
links I T

@ Wick rotate to get Euclidean 1
action and interpret the path J
integral as a classical partition ~ | T
function ?

@ Equilibrium expectation values plaquette k qu.ark
can be estimated by Monte gluon
Carlo simulation Figure: Image originally from JICFus
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Challenges in Lattice QCD

@ Distribution weight for gauge
fields is proportional to huge
(fermion) determinants

Temperature T [MeV]

@ At non-zero baryon density,
there is a sign problem

@ For real-time dynamics, there is Nucle
a sign problem

Net Baryon Density

Figure: The conjectured QCD phase

© We need new approaches diagram. Image: arXiv:1412.0847
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A Synergistic Approach

@ Quantum simulation:
» Simulate QFTs at finite density and real time with no sign problem
» Start with toy models—spin models, then U(1), SU(2)-Higgs,
Schwinger model, SU(2) with fermions, ...
@ Tensor renormalization group (TRG):
» Alternative to MCMC approach
» Use as stepping stone to quantum simulations
@ Conventional lattice QCD:
conventional

» Validation and benchmarking lattice QCD

» Need a lattice codebase that han-
dles arbitrary dimensions and gauge tensor renorm.
groups group

quantum
simulation
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© Quantum Simulation
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Quantum Simulation

Digital: Hamiltonian is mapped to a
simpler quantum system which is
“time-evolved” stroboscopically.
Example: A universal quantum
computer running an algorithm that
simulates a discretized QFT

Analog: Hamiltonian is mapped to a
simpler quantum system which is
allowed to evolve continuously in
real-time. Example: Atoms hopping
around on an optical lattice

LS
i 8

Georgescu et. al., Rev. Mod. Phys. 86, 154 (2014)
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Digital Quantum Simulation of the Schwinger Model

@ Project lead by Giovanni
Pederiva

@ Schwinger model (QED in 141
D) as a toy model for QCD

@ We studied state preparation
methods: ASP, QAOA, RODEO

@ Results are promising for the
long-term

eon Hostetle Symmetry Breakin

ar (1V > hep-lat > arXiv:2109.11859

Help | Advanced

High Energy Physics - Lattice

[Submitied on 24 Sep 2021]

Quantum State Preparation for the Schwinger Model

Giovanni Pederiva, Alexei Bazavov, Brandon Henke, Leon Hostetler, Dean Lee, Huey-Wen
Lin, Andrea Shindler

Itis not possible, using standard lattics techniques in Euclidean space, to calculate the complete
fermionic spectrum of a quantum field theory. Algorithms running on quantum computers have the
potential to access the theory with real-time evolution, enabling a direct computation. As a testing
ground we consider the 1 + 1-dimensional Schwinger model with the presence of a {itheta} term
using a staggered We study the properties of two different
algorithms - adiabatic evolution and the Quantum Approximate Optimization Algorithm - with an
‘emphasis on their cost in terms of CNOT gates. This is crucial to understand the feasibility of

these algorithms, because calculations on near-term quantum devices depend on thelr rapid
convergence. We also propose a blocked algorithm that has the first indications of a better scaling
behavior with the dimensionality of the problem.

Comments: 9 pages, 2 igures, 381 Intemational Symposium on Latice Field Theory, LATTICE2021 26301 Juy, 2021
Zoom/Gather@Massachusetts Institute of Technology

Subjects: High Energy Physics - Lattice (hep-lat)

Gleas:  arkiv2109 1165 (hepdat]
(or arXiv:2109.11859v1 [hep-lat] for this version)
htpsido org/10 48550/arXiv2109.11858 @
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Analog Quantum Simulation of the Abelian-Higgs Model

@ Abelian-Higgs model in 141 D
is Schwinger model with
electron replaced by complex
scalar field

@ Abelian-Higgs model can be
mapped to Rydberg ladder

» A. Bazavov et. al., Phys. Rev.
D 92, 076003 (2015)

» J. Zhang et. al., Phys. Rev.
Lett. 121, 223201 (2018)

> Y. Meurice, Phys. Rev. D
100, 014506 (2019)

» Y. Meurice, Phys. Rev. D
104, 094513 (2021)

@ Reduces to the classical O(2)
model in the limit A = oo and
g?=0
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© The Extended-O(2) Model
@ Motivation
@ The Extended-O(2) Model
® The hy — oo limit

@ Phase Diagram
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Why Study Classical O(2)-like Spin Models?

@ Non-trivial limit of the Abelian-Higgs model (scalar QED) in 1+1 D
@ Implementation on an analog simulator may be a first step toward the
simulation of more complicated models

© Can add a symmetry-breaking term to break the O(2) symmetry
down to Zg

» Study the role of symmetry in spin systems
» Study Z, approximations of continuous U(1)/O(2) symmetry
» Relevant for “field digitization” of gauge theories

@ Develop tensor renormalization group (TRG) methods in a model that
can be validated by conventional MCMC

© A playground for exploring second-order and BKT phase transitions

@ Test our new codebase
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The Extended-O(2) Model

@ We consider an extended-O(2) model! in 2D with energy function

H=— Z COS(SDX-&-,& - ‘PX) - hq Z COS(qSDx)

X7M

@ When hg = 0, this is the classic XY model, with a BKT transition
@ When hg > 0, the continuous angle ¢ is forced into the discrete

values oo < @y k = % < o+ 27

4.5 45 4.5 4.5
ax i ey ax
45 45 45 45~
0 0 0 — 0
67 45 6m 45 6 45 67 45
5 15 15 5

(a)hg=0 (b)hg=1 ()hy=4 (d) hy =64
@ When hg — o0

» For g € Z, this is the ordinary g-state clock model with Z, symmetry

» For g ¢ Z, this defines an interpolation of the clock model for
noninteger g
1JKKN Phys. Rev. B 16, 1217 (1977)
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The hy — oo limit?
@ In the limit hy — oo, we can replace the energy function with
Hext—q = - ZCOS(Sox+ﬂ - (Px)
X5

@ We directly restrict the previously continuous angles to the discrete
values

2wk
<P0§<Px,k=T < o +2m

e For g ¢ Z, divergence from ordinary clock model behavior is driven by
the introduction of a “small angle”:

27 /q

/_ \%/q

zmk )iy =0
i

27 /q

2Hostetler et. al. PRD 104 (5), 054505 and PoS(LATTICE2021)353
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The hg — o0 limit3

: ] disordered

’ 271 Z, ordered

: Z, ordered

’ — 2nd order trans.
: : e  BKT trans.

: . : Critical phase

: : o --- Crossover

: : : : : q

3Hostetler et. al. PRD 104 (5), 054505 and PoS(LATTICE2021)353
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TRG results at large volume*

3.0
qg=4.1 V=4x4 o
2A5 —— V=8x8 )
— V=16x16 2
- — V =32x32 =
20 — V=64x64 a
O 15 — V=128 x 128
1.0 A

N w
(18 o
=
e~
(=)
peak height
oo
1

0.5 A

4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

Figure: Specific heat results for the extended-q clock model from TRG for
g=4.1,45, 4.9, and 5.0 at volumes from 22 x 22 up to 27 x 27.

*Hostetler et. al. PRD 104 (5), 054505 and PoS(LATTICE2021)353
s o



The hy — oo limit®

]

777

R AN A R 3 R NN

disordered
Z> ordered
Z, ordered
2nd order trans.

BKT trans.
Critical phase

Crossover

®Hostetler et. al. PRD 104 (5), 054505 and PoS(LATTICE2021)353
Pt 35, 2
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Phase Diagram

H=- Z cos (x+a — ¥x) — hq Z cos(qpx)

X
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Algorithm Developments

@ In the hy — oo limit, the DOF could be treated as discrete

» Which means we could use an MCMC heatbath algorithm
» We could use a TRG method for large volumes

@ The model is more difficult to study at finite hg
@ For finite hq, the DOF are continuous
» MCMC heatbath is not an option, so we're left with the Metropolis,
which suffers from low acceptance rates and leads to large

autocorrelations in this model
» Furthermore, our TRG method was only designed for the hg — oo limit

@ We needed to make some algorithmic developments

» We implemented a biased Metropolis heatbath algorithm® (BMHA)
which is designed to approach heatbath acceptance rates

» To explore large volumes, my collaborators implemented a Gaussian
quadrature method

®A. Bazavov and B. A. Berg, PRD 71, 114506 (2005)
Ry —



Phase Diagram at Finite-h,

Sext-O(2) = Z COS(QOX-I—;AL - ‘Px) - hq Z COS(qSOX)

X,

%

7

/ : B
.
qx
2
=3 + h
q1 6 ha=0 !

y,,/v’/

=




Specific Heat from TRG with L = 1024 and h, = 64

Hext—O(2) == Z C05(80x+ﬁ - SDX) - hq Z COS(ngX)
Xy x

Specific Heat for h, = 64
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Specific Heat from TRG with L = 1024 and h, = 16

Hext—O(2) = - Z C05(80x+ﬁ - SDX) - hq Z COS(ngX)
X, 14 X

Specific Heat for h, = 16
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Specific Heat from TRG with L = 1024 and h, = 4

Hext—O(2) = - Z C05(80x+ﬁ - SDX) - hq Z COS(QSOX)
X, 14 X

Specific Heat for h, = 4

2.00- -3.0
1.75
2.5
1.50
2.0
125
= 1.00 15
B
0.75
1.0
050
0.5
. 025
0.00- 0.0
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Specific Heat from TRG with L = 1024 and h, =1

Hext-O(2) = - Z COS(QOX_;,_“ — ¥x) — hq Z cos(qepx)
X, 1 %

Specific Heat for h, = 1

-3.0

-2.5

2.0

15

1.0

0.5

0.0
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Specific Heat from TRG with L = 1024 and h, =1

Quantum simulation of similar models with a continuously tunable
parameter have been done with Rydberg atoms (Bernien et. al. Nature
551, 579-584 (2017), Keesling et. al. Nature 568, 207 (2019)). The
resulting phase diagram (right) shows similarities to the proxy phase
diagram of the extended-O(2) model at finite hq.
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Specific Heat from TRG with L = 1024 and h, =1

Hext-O(2) = - Z COS(QOX_;,_“ — ¥x) — hq Z cos(qepx)
X, 1 %

Specific Heat for h, = 1

26 2.682.762.842.92 3.0 3.083.163.243.32 3.4
q

Leon Hostetler Symmetry Breaking Aug. 15, 2023 23/30



Specific Heat from TRG with L = 1024 and h, =1

Hext—O(2) = - Z C05(80x+ﬁ - SDX) - hq Z COS(ngX)
X, 14 X

Entanglement Entropy for 2, = 1

. 2.00-
20
15 '
10 )
0.5 ‘
i 0

0- . . ' ) ' o o ' 0.0
2.6 2.682.762.842.92 3.0 3.083.163.243.32 3.4

Specific Heat for h, = 1

)

0.0

00-+ v v a4
2.6 2.682.762.842.92 3.0 3.083.163.243.32 3.4
q q
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Finishing Up: Reweighting and Finite Size Scaling

dUy

dB | max
Cvl, = Co+ GLLO”

(M) ;0 = Mo + M L2/
XM max = Xo + x1L77”
F(@)| e = Fo + F1L*77.

= Up+ Uil

14

145 F
15+
155
16
165

175

" Reweighted -

riginal 1
Jackknife Maximum —s—

L L L L L L L L
062 063 064 065 066 067 068 069
B

Peak Height
=
8
8

w
8
3

exp=1729+0.015
Q=0.691
X?/dof=0.49

—— Fit: 0.4493+0.0516L173

50 100 150 200 250
L
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Computational Resources

Computationally, this was a massive project and required careful workflow
design with automated production and data analysis

@ 30K+ Monte Carlo simulations just to perform a basic scan of the
parameter space

@ | ran up to 800 nodes at once (trivial parallelization) on MSU's ICER

@ Large autocorrelations required Markov chains of length billions in
some cases

@ Several terabytes of hard disk space for the time series observables
@ | used 500K+ CPU hours on MSU's ICER
...and that’s just for the MCMC.
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Phase Diagram
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Z, ordered
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Outline

@ Conclusion
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Summary

@ We looked at an extended O(2) model with parameters /3, hq, and

H=— Z Cos (Sox-i-ﬂ - ()DX) - hq Z COS(QSOX)

X,

@ The model is related to the Abelian-Higgs model
© May be a good candidate for analog quantum simulation

© The symmetry-breaking term allows
us to explore the role of symmetry
and to study the U(1) — Zq ap-
proximations and to consider also
noninteger q

disordered
Z» ordered
Z, ordered

Ising trans.

@ Rich phase diagram with
crossovers, second-order phase
transitions of various universality
classes and BKT transitions

BKT trans.

- Crossover

Leon Hostetler Symmetry Breaking Aug. 15, 2023
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2nd order trans.

Critical phase
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Lattice Abelian-Higgs Model in 1+1 D

@ The Schwinger model with electron replaced by complex scalar field

@ The lattice action is

2
S= _/Bpl Z Z Re [Ux,uu] — K Z Z [le Ux,u¢x+9 + ¢i+ﬁ Ui,y¢x

x v<p x v=1

Y (olo 1)+ Y olo

Scalar field ¢, = |¢x|e’® on sites x

Abelian gauge fields U, , = =) on links from x to x + /i
Plaquettes Uy ., = e/ MAL(X)+AL (x+) = Au(x+)— Ay ()]

Inverse gauge coupling B, = 1/g>

Hopping coefficient x

Scalar self-coupling A

vy VvV VY VY

@ Reduces to the classical O(2) model when A = 3, = 0o
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Outline

© Introduction to Classical Spin Systems
@ The Ising Model
@ Markov Chain Monte Carlo (MCMCQ)

@ Classical Spin Systems in 2D
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The Ising Model

@ A model of ferromagnetism

o We define discrete “atomic spins”
on a lattice of N sites

@ The energy of a particular configu-
ration is

N
H==> S5S-h)_S

(i) J=1

with nearest neighbor interactions and S; = +1

@ The partition function is

;

= Z e PHi

Leon Hostetler Symmetry Breaking
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The Ising Model

@ Thermodynamic functions

£ 3, n7 B2 OE 10 2 1 oM
= - nz, = T n ) = 2an y X =
0B N 9p B Oh NS Oh
0.0 1.0
—o5 4 0.8
0.6
2 =
£ -1.04 £
w = 04
—1.5 1 0.2
-2.0 0.0 1
T T T T T T
37 150 -
24 100 A
o S]
14 50 4
0 0
: : : : : :
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
B B
Aug. 15, 2023
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Markov Chain Monte Carlo (MCMC)

@ The equilibrium expectation value of an observable O is

e_ﬁEi
(0) —zi:oipia P; = 7

@ Instead of direct enumeration or naive Monte Carlo sampling, we
must do importance sampling

o If N microstates are selected according to the equilibrium distribution
P; = e BEi /7, then

1N
(0)~ & Z O;
i=1
@ Start with some arbitrary microstate Uy and construct a Markov

chain (via e.g. Metropolis algorithm)

update\ update\ update\

Uo Uy Us

such that the chain eventually reaches the equilibrium distribution P;

Leon Hostetler Symmetry Breaking Aug. 15, 2023 6/21



Classical Spin Systems in 2D

H = fJZ §X . §x+ﬁ = *JZCOS(%M — ¥x)
Nz

X5

(a) Ising Model
Leon Hostetler Symmetry Breaking Aug. 15, 2023 7/21



Classical Spin Systems in 2D

H = fJZ §X . §x+ﬁ = *JZCOS(%HL — ¥x)

X1 X,

(a) Ising Model (b) Clock Models

Leon Hostetler Symmetry Breaking
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Classical Spin Systems in 2D

(a) Ising Model (b) Clock Models (c) XY Model
Aug. 15, 2023 7/
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Markov Chain Monte Carlo (MCMC)

Need an updating algorithm that obeys:
e Every microstate must be reachable (ergodicity)

@ The Markov process must eventually reach the equilibrium
distribution P; and stay there

Metropolis algorithm:

@ Given the current configuration U;, generate a candidate
configuration U’ by some random process

@ Accept this candidate as the new configuration U;y1 with probability
P4 = min (1, e*BAE>

© Repeat these steps

Leon Hostetler Symmetry Breaking Aug. 15, 2023 9/21



MCMC for Quantum Field Theories

@ Vacuum expectation values are path integrals

_ | DADY DY O[A, 1, ] eSIAv]

) S
[ DADY Dy eiSIADY]

o After lattice regularization and Wick rotation (t — it)

_ [DUDE Dy O[U, p, ¢] e~ SelVvv]

[ DU DY Dy e=SelUv¥]

@ Limited to equilibrium physics

@ For dynamical physics, need a new approach e.g. quantum simulation

Leon Hostetler Symmetry Breaking Aug. 15, 2023 10/21



TRG

@ In the Monte Carlo approach, we use a Markov chain
importance-sampling algorithm to generate equilibrium configurations

» Monte Carlo has difficulty sampling
this model appropriately at § > 1
forq ¢ Z

> Integrated autocorrelation time ex-
plodes, and we have to perform bil-
lions of heatbath sweeps already on
a 4 x 4 lattice

» Studying this model on larger lat-

tices with Monte Carlo is challenging 00 03 L 15 20

@ Tensor renormalization group (TRG) approach can be used instead

» We validate TRG against Monte Carlo in the regime accessible to
Monte Carlo

» Then we use TRG to explore lattice sizes and [-values beyond the
reach of Monte Carlo

Leon Hostetler Symmetry Breaking Aug. 15, 2023 11/21



Entanglement Entropy from TRG with L = 1024

Entanglement Entropy for /i, = 0.1

Entanglement Entropy for h, = 1

Entanglement Entropy for h, = 4

Entanglement Entropy for /, = 16

Entanglement Entropy for /, = 64 10

0.0
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Entanglement Entropy from TRG with L = 1024

Entanglement Entropy near g =3

hg=0.1

1.0

0.5
0.0

CBOYTNO®O Y N
SBRIAISEINT
NNaNTEmm .
q

CDWOTNO®OT N T
NOeR RO NM g
NNANT M E s m

q

Leon Hostetler Symmetry Breaki Aug. 15, 2023 13 /21



Specific Heat from TRG with L = 1024

Specific Heat near g =3

hq=0.001

< ©
) o ~

CROTNO DO T CROTNO®O TN
NON RO GO o N m NOR®O GO amg
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Choice of g
@ Choice of g can change the DOF in the model
@ We choose pp =0, i.e. ¢ € [0,27), but we also investigate ¢ = —7

o =20 o= —T

4.5

9.5

Aug. 15, 2023 15/21
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Phase diagram for hy; = oo and ¢g = —7

B
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Placement of (5

@ One can define the model as

H=-p Z cos (SOX+[) — Px) — hq Z cos(qepx)

X,
where 5 is multiplying the first term like a field-theoretic coupling.
Then the Boltzmann factor is e~

@ Alternatively, one can factor 8 out front and define the model as

H=—> cos(pxis—px) — H D _ cos(qps)
X, [t X
with Boltzmann factor e #%, where 3 is the inverse temperature
@ The two definitions are related by hy = hq/3

@ We have used both definitions, however, the Monte Carlo results
shown in these slides are from the definition with 3 factored out front

Leon Hostetler Symmetry Breaking Aug. 15, 2023 17 /21



The Need to Shift the Angles: A Subtlety

@ In the ordinary clock model, we have the energy function
=— Z cos(px — ¢y)
()
@ The angles (’ng) are selected discretely as ¢p < <p£<k) = % < o + 27
@ When § =0 and with 9 = 0, the spins are selected uniformly from a

“Dirac comb” al
q
27k
clock
Pisiale) ~ 30 (o~ )

P(»)
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The Need to Shift the Angles: A Subtlety

@ In the Extended-O(2) model, we have the energy function

H=-— Z cos(px — ¢y) — hq Zcos(qwx)
(xy) x

@ The angles ¢, are now selected continuously in
o<l peR <o+ 27

@ When 8 = 0 and with ¢g = 0, the spins are selected from a
distribution

P§X4};02(§0) ~ ehq cos(qy)
»$0
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The Need to Shift the Angles: A Subtlety

P()

Figure: To recover the Dirac comb of the clock model distribution in the hy — oo
limit, the angle domain must be shifted by some ¢ so that the histogram includes
all relevant peaks.
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The Need to Shift the Angles: A Subtlety

@ To match the clock model in the hy — oo limit, it should be sufficient
to choose ¢ such that

PextOZ

e () —— Pgloc(v)

hq*)OO q,%0

where for the clock model, angles are selected from [pg, vo + 27), but
for the Extended-O(2) model, they are selected from
[po — &, 0 — € + 2m)

@ In our case, we use @9 = 0, and choose

c=n(1-12)

so that the [g| peaks of the distribution ngég)z(go) are centered in
the domain [—¢,271 — ¢)
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