# Symmetry Breaking in an Extended-O(2) Model

Leon Hostetler <sup>1</sup>, Ryo Sakai <sup>2</sup>, Jin Zhang <sup>3</sup>, Judah Unmuth-Yockey <sup>4</sup>, Alexei Bazavov <sup>1</sup>, and Yannick Meurice <sup>3</sup>

<sup>1</sup> Michigan State University

<sup>2</sup>Syracuse University

<sup>3</sup>University of Iowa

<sup>4</sup>Fermilab

June 15, 2022 QuLAT Collaboration

#### Outline

- Motivation
- 2 The Extended-O(2) Model
  - Previous Work
  - Phase Diagram
- Monte Carlo Exploration
- 4 Summary & Outlook

#### Outline

- Motivation
- 2 The Extended-O(2) Model
  - Previous Work
  - Phase Diagram
- Monte Carlo Exploration
- 4 Summary & Outlook

#### Motivation

- Ultimately, we want to do quantum simulation of lattice QCD
- First, we must be able to do this with simpler Abelian models
- Given the limited number of qubits available, it is important to optimize the discretization procedure
- ullet One can make a  $\mathbb{Z}_q$  approximation of a continuous U(1) symmetry
- ullet To optimize such a  $\mathbb{Z}_q$  approximation, it is useful to build a continuous family of models that interpolate among the various possibilities
- This brings us to our extended-O(2) model

#### Outline

- Motivation
- 2 The Extended-O(2) Model
  - Previous Work
  - Phase Diagram
- Monte Carlo Exploration
- 4 Summary & Outlook

# The Extended-O(2) Model

We consider an extended-O(2) model in 2D with action

$$S_{\text{ext-}O(2)} = -\beta \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma \sum_{x} \cos(q\varphi_x)$$

- ullet When  $\gamma=0$ , this is the classic XY model, with a BKT transition
- When  $\gamma > 0$ , the second term breaks periodicity and we must choose  $\varphi \in [\varphi_0, \varphi_0 + 2\pi)$  for some choice  $\varphi_0$
- When  $\gamma \to \infty$ , the continuous angle  $\varphi$  is forced into the discrete values

$$\varphi_0 \le \varphi_{x,k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- ▶ For  $q \in \mathbb{Z}$ , this is the ordinary q-state clock model with  $\mathbb{Z}_q$  symmetry
- ► For  $q \notin \mathbb{Z}$ , this defines an interpolation of the clock model for noninteger q

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ ト ヨ コ \* り Q (^)

## Previous Work: The $\gamma \to \infty$ limit

• In the limit  $\gamma \to \infty$ , we can replace the action with

$$S_{\mathsf{ext-}q} = -\beta \sum_{\mathsf{x},\mu} \cos(\varphi_{\mathsf{x}+\hat{\mu}} - \varphi_{\mathsf{x}})$$

 We directly restrict the previously continuous angles to the discrete values

$$\varphi_0 \le \varphi_{\mathsf{x},k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- We choose  $\varphi_0 = 0$ , i.e.  $\varphi \in [0, 2\pi)$ , but we also investigate  $\varphi_0 = -\pi$
- For  $q \notin \mathbb{Z}$ , divergence from ordinary clock model behavior is driven by the introduction of a "small angle":



# Previous Work: The $\gamma \to \infty$ limit<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>PRD 104 (5), 054505

# Previous Work: The $\gamma \to 0$ limit for $q \in \mathbb{Z}$

- Previous work on this model by others includes work by Jose, Kadanoff, Kirkpatrick, and Nelson in 1977 (PRB 16 3)
  - ▶ They considered the same model but with integer q and  $\gamma \to 0$  as a symmetry-breaking perturbation to the O(2) model
  - ► They study it using two schemes—Migdal approximation and a generalized Villain model and spin-wave expansion
  - ▶ Key finding is that any  $\gamma > 0$  perturbation will force the system away from O(2) behavior if  $\beta$  is sufficiently large
- Previous work on this model by others includes work by N. Butt, X.-Y. Jin, J. C. Osborn, and Z. H. Saleem in 2022 (arXiv:2205.03548)
  - ▶ They considered the same model also with integer q and  $\gamma \to 0$  as a symmetry-breaking perturbation to the O(2) model
  - ► They study it using a tensor formulation
  - $\blacktriangleright$  A key finding is that even a small perturbation results in an additional phase transition which has a non-zero critical temperature even in the limit  $\gamma \to 0$

# Phase Diagram

$$S = -\beta \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma \sum_{x} \cos(q\varphi_x)$$



# Algorithm Developments

- ullet In the  $\gamma 
  ightarrow \infty$  limit, the DOF can be treated as discrete
  - ▶ Which means we could use an MCMC heatbath algorithm
  - We could use a TRG method for large volumes
- $\bullet$  The model is more difficult to study at finite  $\gamma$
- ullet For finite  $\gamma$ , the DOF are continuous
  - MCMC heatbath is not an option, so we're left with the Metropolis, which suffers from low acceptance rates and leads to large autocorrelations in this model
  - $\blacktriangleright$  Furthermore, our TRG method was only designed for the  $\gamma \to \infty$  limit
- We needed to make some algorithmic developments
  - ► We implemented a biased Metropolis heatbath algorithm² (BMHA) which is designed to approach heatbath acceptance rates
  - ► To explore large volumes, we implemented a Gaussian quadrature method (see presentation by Ryo Sakai on this)

#### Outline

- Motivation
- 2 The Extended-O(2) Model
  - Previous Work
  - Phase Diagram
- Monte Carlo Exploration
- 4 Summary & Outlook

## Monte Carlo Exploration



Figure: Example on 4 × 4 lattice with q = 5.9,  $\gamma = 4$ , and  $\beta \in [0, 2]$ .

#### Monte Carlo Exploration

$$S_{ ext{ext-}O(2)} = -eta \sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - \gamma \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$



$$S_{ ext{ext-}O(2)} = -eta \sum_{x,\mu} \cos(arphi_{x+\hat{\mu}} - arphi_{x}) - \gamma \sum_{x} \cos(qarphi_{x})$$



$$S_{ ext{ext-}O(2)} = -eta \sum_{x,\mu} \cos(arphi_{x+\hat{\mu}} - arphi_{x}) - \gamma \sum_{x} \cos(qarphi_{x})$$



$$S_{ ext{ext-}O(2)} = -eta \sum_{x,\mu} \cos(arphi_{x+\hat{\mu}} - arphi_{x}) - \gamma \sum_{x} \cos(qarphi_{x})$$



$$S_{ ext{ext-}O(2)} = -eta \sum_{x,\mu} \cos(arphi_{x+\hat{\mu}} - arphi_{x}) - \gamma \sum_{x} \cos(qarphi_{x})$$



$$S_{\mathsf{ext-}O(2)} = -eta \sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) - \gamma \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$



$$S_{\mathsf{ext-O(2)}} = -\beta \sum_{\mathsf{x},\mu} \cos(\varphi_{\mathsf{x}+\hat{\mu}} - \varphi_{\mathsf{x}}) - \gamma \sum_{\mathsf{x}} \cos(q\varphi_{\mathsf{x}})$$



#### Outline

- Motivation
- 2 The Extended-O(2) Model
  - Previous Work
  - Phase Diagram
- Monte Carlo Exploration
- 4 Summary & Outlook

# Summary & Outlook

**1** We looked at an extended O(2) model with parameters  $\beta$ ,  $\gamma$ , and q

$$S = -\beta \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma \sum_{x} \cos(q\varphi_x)$$

- @ Previously, we established the  $\gamma=\infty$  slice of the 3D phase diagram
  - ▶ When  $q \in \mathbb{Z}$ , we recover the classic q-state clock model which has a single second-order phase transition for q=2,3,4 and two BKT transitions for  $q \geq 5$
  - ▶ When  $q \notin \mathbb{Z}$ , we get a crossover and a second-order phase transition
- lacktriangle We are currently exploring the finite  $\gamma$  region of the phase diagram
  - Finite size scaling
  - Ryo Sakai is studying the model on large lattices using tensor methods
- This model may be a good candidate for analog quantum simulation as a small step toward the ultimate goal of simulating QCD on a quantum computer
- Perhaps on Rydberg arrays. See (Keesling et. al. Nature 568, 207 (2019))

Thank you!

Additional Slides:

### Angle Histograms

In the Extended-O(2) model, each spin variable can be represented by an angle  $\varphi \in [0,2\pi)$ . Histograms of this angle over many configurations and over all sites in a configuration can help to illustrate what is happening when q and  $\gamma$  are varied.



Figure: (LEFT) An example angles histogram for the case  $q=3.2, \ \gamma=1.0,$  and  $\beta=0.8.$  (RIGHT) An example angles histogram for the case  $q=3.0, \ \gamma=1.0,$  and  $\beta=0.8.$ 

# Angle Histograms at $\gamma = 0.1$



Figure: Heatmaps of the angle histograms for several q. Brighter colors correspond to higher peaks in the angle histogram. The vertical white lines were added to indicate the preferred angles (i.e.  $2\pi k/q$  for  $k=0,1,\ldots,\lfloor q\rfloor$ ) for that value of q.

Leon Hostetler (MSU) Extended-O(2) Model June 15, 2022 3/12

# Angle Histograms at $\gamma = 1$



Figure: Heatmaps of the angle histograms for several q with  $\gamma=1$  and  $\beta\in[0,2]$ . At large  $\beta$ , artifacts develop due to freezing/insufficient statistics, thus, one should ignore the upper parts i.e.  $\beta\gtrsim1.2$  of these heatmaps.

# Angle Histograms along a line of Constant $\beta$



## Choice of $\varphi_0$

- ullet Choice of  $arphi_0$  can change the DOF in the model
- We choose  $\varphi_0 = 0$ , i.e.  $\varphi \in [0, 2\pi)$ , but we also investigate  $\varphi_0 = -\pi$







# Phase diagram for $\gamma=\infty$ and $\varphi_0=-\pi$



#### Placement of $\beta$

• One can define the model as

$$S = -\beta \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma \sum_{x} \cos(q\varphi_x)$$

where  $\beta$  is multiplying the first term like a field-theoretic coupling. Then the Boltzmann factor is  $e^{-S}$ 

ullet Alternatively, one can factor eta out front and define the model as

$$S = -\sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma' \sum_{x} \cos(q\varphi_x)$$

with Boltzmann factor  $e^{-\beta S}$ , where  $\beta$  is the inverse temperature

- $\bullet$  The two definitions are related by  $\gamma'=\gamma/\beta$
- ullet We have used both definitions, however, the Monte Carlo results shown in these slides are from the definition with eta factored out front

• In the ordinary clock model, we have the energy function

$$S = -\beta \sum_{\langle x, y \rangle} \cos(\varphi_x - \varphi_y)$$

- The angles  $\varphi_x^{(k)}$  are selected discretely as  $\varphi_0 \leq \varphi_x^{(k)} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$ • When  $\beta = 0$  and with  $\varphi_0 = 0$ , the spins are selected uniformly from a
- When eta=0 and with  $arphi_0=0$ , the spins are selected uniformly from a "Dirac comb"

$$P_{q,\varphi_0=0}^{clock}(\varphi) \sim \sum_{k=0}^{\lfloor q \rfloor} \delta\left(\varphi - \frac{2\pi k}{q}\right)$$



• In the Extended-O(2) model, we have the energy function

$$S = -\beta \sum_{\langle x, y \rangle} \cos(\varphi_x - \varphi_y) - \gamma \sum_x \cos(q\varphi_x)$$

• The angles  $\varphi_x$  are now selected continuously in

$$\varphi_0 \le \varphi \in \mathbb{R} < \varphi_0 + 2\pi$$

• When  $\beta = 0$  and with  $\varphi_0 = 0$ , the spins are selected from a distribution

$$P_{q,\varphi_0}^{extO2}(\varphi) \sim e^{\gamma \cos(q\varphi)}$$





Figure: To recover the Dirac comb of the clock model distribution in the  $\gamma \to \infty$  limit, the angle domain must be shifted by some  $\varepsilon$  so that the histogram includes all relevant peaks.

• To match the clock model in the  $\gamma \to \infty$  limit, it should be sufficient to choose  $\varepsilon$  such that

$$P_{q,\varphi_0}^{extO2}(\varphi) \xrightarrow[\gamma \to \infty]{} P_{q,\varphi_0}^{clock}(\varphi)$$

where for the clock model, angles are selected from  $[\varphi_0, \varphi_0 + 2\pi)$ , but for the Extended-O(2) model, they are selected from  $[\varphi_0 - \varepsilon, \varphi_0 - \varepsilon + 2\pi)$ 

ullet In our case, we use  $arphi_0=0$ , and choose

$$\varepsilon = \pi \left( 1 - \frac{\lfloor q \rfloor}{q} \right)$$

so that the  $\lceil q \rceil$  peaks of the distribution  $P_{q,\varphi_0}^{extO2}(\varphi)$  are centered in the domain  $[-\varepsilon, 2\pi - \varepsilon)$ 

◆ロト ◆母 ト ◆ き ト ◆ き ト き 目 を り へ ○ ○