Clock model interpolation and symmetry breaking in O(2) models¹

Leon Hostetler ¹, Jin Zhang ², Ryo Sakai ², Judah Unmuth-Yockey ³, Alexei Bazavov ¹, and Yannick Meurice ²

¹ Michigan State University

²University of Iowa

³Fermilab

July 29, 2021

Outline

- Motivation
- 2 The Models
 - Extended-O(2) model
 - Extended-q clock model
- \bigcirc MC results from the extended-q clock model
- 4 TRG results from the extended-q clock model
- 6 Phase Diagrams
- 6 Summary & Outlook

Motivation

- Ultimately, we want to do quantum simulation of lattice QCD
- First, we must be able to do this with simpler Abelian models
- Given the limited number of qubits available, it is important to optimize the discretization procedure
- ullet One can make a \mathbb{Z}_q approximation of a continuous U(1) symmetry
- ullet To optimize such a \mathbb{Z}_q approximation, it is useful to build a continuous family of models that interpolate among the various possibilities
- This brings us to our extended-O(2) model

The Extended-O(2) Model

• We consider an extended-O(2) model in 2D with action

$$S_{ ext{ext-}O(2)} = -eta \sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - \gamma \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

- ullet When $\gamma=0$, this is the classic XY model, with a BKT transition
- When $\gamma > 0$, the second term breaks periodicity and we must choose $\varphi \in [\varphi_0, \varphi_0 + 2\pi)$ for some choice φ_0
- When $\gamma \to \infty$, the continuous angle φ is forced into the discrete values

$$\varphi_{\mathbf{x}}^{(k)} = \frac{2\pi k}{q} \in [\varphi_0, \varphi_0 + 2\pi)$$

- ▶ For $q \in \mathbb{Z}$, this is the ordinary q-state clock model with \mathbb{Z}_q symmetry, which has a single second-order phase transition for q = 2, 3, 4 and two BKT transitions for $q \ge 5$
- ▶ For $q \notin \mathbb{Z}$, this defines an interpolation of the clock model for noninteger q

The Extended-O(2) Model

• We consider an extended-O(2) model in 2D with action

$$S_{ ext{ext-}O(2)} = -eta \sum_{x,\mu} \cos(arphi_{x+\hat{\mu}} - arphi_{x}) - \gamma \sum_{x} \cos(qarphi_{x})$$

- ullet When $\gamma=0$, this is the classic XY model, with a BKT transition
- When $\gamma > 0$, the second term breaks periodicity and we must choose $\varphi \in [\varphi_0, \varphi_0 + 2\pi)$ for some choice φ_0
- When $\gamma \to \infty$, the continuous angle φ is forced into the discrete values

$$\varphi_{\mathsf{x}}^{(k)} = \frac{2\pi k}{q} \in [\varphi_0, \varphi_0 + 2\pi)$$

- ▶ For $q \in \mathbb{Z}$, this is the ordinary q-state clock model with \mathbb{Z}_q symmetry, which has a single second-order phase transition for q = 2, 3, 4 and two BKT transitions for $q \geq 5$
- ► For $q \notin \mathbb{Z}$, this defines an interpolation of the clock model for noninteger q

The Extended-q Clock Model

• In the limit $\gamma \to \infty$, we can replace the action with

$$S_{\text{ext-}q} = -\beta \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x)$$

 We directly restrict the previously continuous angles to the discrete values

$$\varphi_{\mathsf{x}}^{(k)} = \frac{2\pi k}{q} \in [\varphi_0, \varphi_0 + 2\pi)$$

- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$
- For $q \notin \mathbb{Z}$, divergence from ordinary clock model behavior is driven by the introduction of a "small angle":

Monte Carlo results at small volume

Figure: Results for the extended-q clock model from a heatbath algorithm on a 4×4 lattice.

Leon Hostetler (MSU) Clock Models July 29, 2021 7/15

Phase transitions for $q \in \mathbb{Z}$

Figure: For integer $q \ge 5$, both peaks in the specific heat are associated with BKT transitions (see Li et. al. in Phys. Rev. E **101**, 060105(R) (2020)).

Phase transitions for $q \notin \mathbb{Z}$ (?)

Figure: For non-integer q, are these also BKT transitions or are they something else?

◆ロト ◆部ト ◆ミト ◆ミト 亳1= 夕久○

TRG

- In the Monte Carlo approach, we use a Markov chain importance-sampling algorithm to generate equilibrium configurations
 - ▶ Monte Carlo has difficulty sampling this model appropriately at $\beta>1$ for $q\notin\mathbb{Z}$
 - ► Integrated autocorrelation time explodes, and we have to perform billions of heatbath sweeps already on a 4 × 4 lattice
 - Studying this model on larger lattices with Monte Carlo is challenging

- Tensor renormalization group (TRG) approach can be used instead
 - We validate TRG against Monte Carlo in the regime accessible to Monte Carlo
 - ▶ Then we use TRG to explore lattice sizes and β -values beyond the reach of Monte Carlo

◆ロト ◆昼 ト ◆ き ト ◆ き ト を り へ ○

10 / 15

TRG results at large volume

Figure: Specific heat results for the extended-q clock model from TRG obtained by Ryo for q = 4.1, 4.5, 4.9, and 5.0 at volumes from $2^2 \times 2^2$ up to $2^7 \times 2^7$.

 4 □ ト 4 □

Phase transitions for $q \notin \mathbb{Z}$

- First peak in specific heat:
 - Magnetic susceptibility converges to a finite constant as H → 0
 - Magnetic susceptibility converges to a finite constant as $V \to \infty$
 - ► ⇒ Not a phase transition
- Second peak in specific heat:
 - Looking at the magnetization vs. magnetic susceptibility gives result consistent with $\delta=15$
 - Finite size scaling of magnetic susceptibility gives result consistent with $\gamma = 7/4$
 - ► ⇒ Ising phase transition

Example from TRG with q=4.3 showing χ_M going to a constant as external field is taken to zero.

Example from TRG with q=4.3 showing that volume dependence of χ_M is consistent with $\gamma=7/4=1.75$.

Phase diagram for $\gamma=\infty$ and $\varphi_0=0$

Summary & Outlook

• We looked at an extended O(2) model with parameters β , γ , and q

$$S = -\beta \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma \sum_{x} \cos(q\varphi_x)$$

- 2 We established the $\gamma=\infty$ slice of the 3D phase diagram
 - ▶ When $q \in \mathbb{Z}$, we recover the classic q-state clock model
 - ▶ When $q \notin \mathbb{Z}$, we get a crossover and a second-order phase transition
- lacktriangle We want to look at finite γ
- This model may be a good candidate for analog quantum simulation perhaps on Rydberg arrays. See (Keesling et. al. Nature 568, 207 (2019))

4 D > 4 D > 4 E > 4 E > E = 990

Thank you!

Additional Slides:

Overview

- The Extended-O(2) Model
 - Monte Carlo results
- The Extended-q Clock Mode
 - Definitions
 - TRG Energy Density
 - Choice of φ_0
 - Effect of Angle Cutoff
 - TRG Validation
 - Autocorrelation
 - Monte Carlo results

Some Monte Carlo Results

Leon Hostetler (MSU)

Figure: Results from a Metropolis algorithm on a 4 \times 4 lattice with q = 5.0.

Clock Models

4 □ ▶ < 륜 ▶ < 분 ▶ < 분 ▶ < 분 ≥

July 29, 2021

3 / 17

Some Monte Carlo Results

Figure: Results from a Metropolis algorithm on a 4 \times 4 lattice with $\gamma/\beta=5.0$.

Leon Hostetler (MSU) Clock Models July 29, 2021 4 / 17

Overview

- 7 The Extended-O(2) Model
 - Monte Carlo results
- 8 The Extended-q Clock Model
 - Definitions
 - TRG Energy Density
 - Choice of φ_0
 - Effect of Angle Cutoff
 - TRG Validation
 - Autocorrelation
 - Monte Carlo results

Definitions

Internal energy

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z = -\langle S \rangle$$

Specific heat

$$C = \frac{1}{V} \frac{\partial \langle E \rangle}{\partial T} = \frac{\beta^2}{V} (\langle S^2 \rangle - \langle S \rangle^2)$$

Magnetization

$$\langle \vec{M} \rangle = \frac{1}{\beta} \frac{\partial}{\partial \vec{H}} \ln Z = \left\langle \sum_{x} \vec{s}_{x} \right\rangle$$

Magnetic susceptibility

$$\chi_{\vec{M}} = \frac{1}{V} \frac{\partial \langle \vec{M} \rangle}{\partial \vec{H}} = \frac{\beta}{V} \left(\langle |\vec{M}|^2 \rangle - \left| \langle \vec{M} \rangle \right|^2 \right).$$

Proxy magnetization and susceptibility

$$\langle |\vec{M}| \rangle = \left\langle \left| \sum_{\mathbf{x}} \vec{\mathbf{s}}_{\mathbf{x}} \right| \right\rangle, \qquad \chi_{|\vec{M}|} = \frac{\beta}{V} \left(\langle |\vec{M}|^2 \rangle - \langle |\vec{M}| \rangle^2 \right)$$

 4 □ → 4 ② → 4 ③

Energy Density from TRG

Figure: Energy density (logscale) from TRG with volume 1024×1024 .

Choice of φ_0

- ullet Choice of $arphi_0$ can change the DOF in the model
- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$

Phase diagram for $\gamma = \infty$ and $\varphi_0 = -\pi$

Effect of Angle Cutoff

Figure: Specific heat for q=3.141592654 with different cutoffs for the allowed angles. When the cutoff is removed (i.e. $\varphi\in(-\infty,\infty)$), all irrational q reduce to the XY model, and all rational q=r/s reduce to the r-state ordinary clock model.

July 29, 2021

TRG Validation

Figure: Comparison of specific heat calculated via exact and TRG for q = 4.0. Bottom panels show difference of TRG from exact.

Figure: Comparison of specific heat calculated via MC and TRG for q=4.9. Bottom panels show difference of TRG from MC with MC as baseline.

Autocorrelation

$$ilde{ au}_{X,int} = 1 + 2\sum_{t=1}^{T} rac{C(t)}{C(0)}$$
 where $C(t) = \langle X_i X_{i+t}
angle - \langle X_i
angle \langle X_{i+t}
angle$

Figure: Integrated autocorrelation time for the energy density on a 4×4 lattice using heatbath algorithm.

Figure: The values of T used to extract τ_{int} .

 Leon Hostetler (MSU)
 Clock Models
 July 29, 2021
 12 / 17

Figure: Results from a heatbath algorithm on a 4×4 lattice.

Leon Hostetler (MSU) Clock Models July 29, 2021 13 / 17

Figure: Results from a heatbath algorithm on a 4×4 lattice.

Leon Hostetler (MSU) Clock Models July 29, 2021 14/17

Figure: Results from a heatbath algorithm on a 4×4 lattice.

15 / 17

Leon Hostetler (MSU) Clock Models July 29, 2021

Figure: Results from a heatbath algorithm on a 4×4 lattice.

16 / 17

Leon Hostetler (MSU) Clock Models July 29, 2021

Figure: Results from a heatbath algorithm on a 4×4 lattice.

17 / 17

Leon Hostetler (MSU) Clock Models July 29, 2021