Clock model interpolation and symmetry breaking in O(2) models¹

Leon Hostetler 1 , Jin Zhang 2 , Ryo Sakai 2 , Judah Unmuth-Yockey 3 , Alexei Bazavov 1 , and Yannick Meurice 2

Michigan State University

²University of Iowa

³Fermilab

May 10, 2021 QuLAT Collaboration

¹On arXiv soon!

Outline

- Motivation
- 2 The Models
 - Extended-O(2) model
 - Extended-q clock model
- \bigcirc MC results from the extended-q clock model
- \P TRG results from the extended-q clock model
- 5 Characterizing the phase transitions
 - ullet o over to Jin

Motivation

- Ultimately, we want to do quantum simulation of lattice QCD
- First, we must be able to do this with simpler Abelian models
- Given the limited number of qubits available, it is important to optimize the discretization procedure
- ullet One can make a \mathbb{Z}_q approximation of a continuous U(1) symmetry
- ullet To optimize such a \mathbb{Z}_q approximation, it is useful to build a continuous family of models that interpolate among the various possibilities
- This brings us to our extended-O(2) model

The Extended-O(2) Model

We consider an extended-O(2) model in 2D with action

$$S_{\mathsf{ext-}O(2)} = \sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) + \gamma \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$

- ullet When $\gamma=0$, this is the classic XY model, with a BKT transition
- When $\gamma > 0$, the second term breaks periodicity and we must choose $\varphi \in [\varphi_0, \varphi_0 + 2\pi)$ for some choice φ_0
- When $\gamma \to \infty$, the continuous angle φ is forced into the discrete values

$$\varphi_0 \le \varphi_{x,k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- ▶ For $q \in \mathbb{Z}$, this is the ordinary q-state clock model with \mathbb{Z}_q symmetry
- ► For $q \notin \mathbb{Z}$, this defines an interpolation of the clock model for noninteger q

The Extended-q Clock Model

• In the limit $\gamma \to \infty$, we can replace the action with

$$S_{\mathsf{ext-}q} = \sum_{\mathsf{x},\mu} \cos(\varphi_{\mathsf{x}+\hat{\mu}} - \varphi_{\mathsf{x}})$$

 We directly restrict the previously continuous angles to the discrete values

$$\varphi_0 \le \varphi_{x,k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$
- For $q \notin \mathbb{Z}$, divergence from ordinary clock model behavior is driven by the introduction of a "small angle":

그 > 《윤 > 《호 > 《호 > 호)도 외익(C

Monte Carlo results at small volume

Figure: Results for the extended-q clock model from a heatbath algorithm on a 4×4 lattice.

- 4 ㅁ > 4 롼 > 4 횬 > - 1 분 는 - 9 Q C

Phase transitions for $q \in \mathbb{Z}$

Figure: For integer $q \ge 5$, both peaks in the specific heat are associated with BKT transitions (see Li et. al. in Phys. Rev. E **101**, 060105(R) (2020)).

Leon Hostetler (MSU) Clock Model May 10, 2021 7 / 12

Phase transitions for $q \notin \mathbb{Z}$ (?)

Figure: For non-integer q, are these also BKT transitions or are they something else?

4日 → 4日 → 4 三 → 4 三 → 9 0 ○

TRG

- In the Monte Carlo approach, we use a Markov chain importance-sampling algorithm to generate equilibrium configurations
 - Unfortunately, in this model for non-integer q and large β , the configuration space splits into two sectors and the Markov chain tends to get stuck in one or the other
 - ▶ Monte Carlo has difficulty sampling this model appropriately at $\beta>1$ for $q\notin\mathbb{Z}$
 - ► Integrated autocorrelation time explodes, and we have to perform billions of heatbath sweeps already on a 4 × 4 lattice
 - ► Studying this model on larger lattices with Monte Carlo is challenging
- Tensor renormalization group (TRG) approach can be used instead
 - We validate TRG against Monte Carlo in the regime accessible to Monte Carlo
 - ▶ Then we use TRG to explore lattice sizes and β -values beyond the reach of Monte Carlo

TRG results at large volume

Figure: Specific heat results for the extended-q clock model from TRG obtained by Ryo for q=4.1, 4.5, 4.9, and 5.0 at volumes from $2^2 \times 2^2$ up to $2^{10} \times 2^{10}$.

 4 □ ▷ 4 □

Characterizing the phase transitions

ightarrow now over to Jin for his results on the phase transitions

Thank you!

Additional Slides:

Overview

- 6 The Extended-O(2) Model
 - Monte Carlo results
- 7 The Extended-q Clock Mode
 - Definitions
 - TRG Energy Density
 - Choice of φ_0
 - Effect of Angle Cutoff
 - TRG Validation
 - Autocorrelation
 - Monte Carlo results
- 8 Phase Diagrams

Some Monte Carlo Results

Figure: Results from a Metropolis algorithm on a 4 \times 4 lattice with q=5.0.

4□ ▶ 4 년

Some Monte Carlo Results

Figure: Results from a Metropolis algorithm on a 4 \times 4 lattice with $\gamma/\beta=5.0$.

Leon Hostetler (MSU) Clock Model May 10, 2021 4/20

Overview

- 6 The Extended-O(2) Mode
 - Monte Carlo results
- The Extended-q Clock Model
 - Definitions
 - TRG Energy Density
 - Choice of φ_0
 - Effect of Angle Cutoff
 - TRG Validation
 - Autocorrelation
 - Monte Carlo results
- 8 Phase Diagrams

Definitions

Internal energy

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z = -\langle S \rangle$$

Specific heat

$$C = \frac{1}{V} \frac{\partial \langle E \rangle}{\partial T} = \frac{\beta^2}{V} (\langle S^2 \rangle - \langle S \rangle^2)$$

Magnetization

$$\langle \vec{M} \rangle = \frac{1}{\beta} \frac{\partial}{\partial \vec{H}} \ln Z = \left\langle \sum_{x} \vec{s}_{x} \right\rangle$$

Magnetic susceptibility

$$\chi_{\vec{M}} = \frac{1}{V} \frac{\partial \langle \vec{M} \rangle}{\partial \vec{H}} = \frac{\beta}{V} \left(\langle |\vec{M}|^2 \rangle - \left| \langle \vec{M} \rangle \right|^2 \right).$$

Proxy magnetization and susceptibility

$$\langle |\vec{M}| \rangle = \left\langle \left| \sum_{\mathbf{x}} \vec{\mathbf{s}}_{\mathbf{x}} \right| \right\rangle, \qquad \chi_{|\vec{M}|} = \frac{\beta}{V} \left(\langle |\vec{M}|^2 \rangle - \langle |\vec{M}| \rangle^2 \right)$$

 4 □ ト 4 ② ト 4 ② ト 4 ② ト 4 ② ト 2 □ ト ② へ ○

 Leon Hostetler (MSU)
 Clock Model
 May 10, 2021 6/20

Energy Density from TRG

Figure: Log of the energy density from TRG with volume 1024 \times 1024.

Choice of φ_0

- ullet Choice of $arphi_0$ can change the DOF in the model
- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$

Effect of Angle Cutoff

Figure: Specific heat for q=3.141592654 with different cutoffs for the allowed angles. When the cutoff is removed (i.e. $\varphi\in(-\infty,\infty)$), all irrational q reduce to the XY model, and all rational q=r/s reduce to the r-state ordinary clock model.

9/20

TRG Validation

Figure: Comparison of specific heat calculated via exact and TRG for q = 4.0. Bottom panels show difference of TRG from exact.

Figure: Comparison of specific heat calculated via MC and TRG for q=4.9. Bottom panels show difference of TRG from MC with MC as baseline.

10 / 20

Autocorrelation

$$ilde{ au}_{X,int} = 1 + 2\sum_{t=1}^{T} rac{C(t)}{C(0)} \quad ext{where} \quad C(t) = \langle X_i X_{i+t}
angle - \langle X_i
angle \langle X_{i+t}
angle$$

4.1 - 2¹⁶ - 2¹⁵ - 2¹⁴ - 2¹³ - 2¹⁴ - 2¹³ - 2¹² - 2¹² - 2¹¹ - 2¹⁰ - 2⁹ - 2⁹ - 2⁹ - 2⁹

Figure: Integrated autocorrelation time for the energy density on a 4×4 lattice using heatbath algorithm.

Figure: The values of T used to extract τ_{int} .

Leon Hostetler (MSU) Clock Model May 10, 2021 11/20

Figure: Results from a heatbath algorithm on a 4×4 lattice.

Leon Hostetler (MSU) Clock Model May 10, 2021 12/20

Figure: Results from a heatbath algorithm on a 4×4 lattice.

Leon Hostetler (MSU) Clock Model May 10, 2021 13/20

Figure: Results from a heatbath algorithm on a 4×4 lattice.

Leon Hostetler (MSU) Clock Model May 10, 2021 14/20

Figure: Results from a heatbath algorithm on a 4×4 lattice.

15/20

Leon Hostetler (MSU) Clock Model May 10, 2021

Figure: Results from a heatbath algorithm on a 4×4 lattice.

16/20

Leon Hostetler (MSU) Clock Model May 10, 2021

Overview

- 6 The Extended-O(2) Mode
 - Monte Carlo results
- The Extended-q Clock Mode
 - Definitions
 - TRG Energy Density
 - Choice of φ_0
 - Effect of Angle Cutoff
 - TRG Validation
 - Autocorrelation
 - Monte Carlo results
- 8 Phase Diagrams

Phase diagram for $\gamma=\infty$ and $\varphi_0=0$

Phase diagram for $\gamma = \infty$ and $\varphi_0 = -\pi$

Phase diagram for finite γ

