# Clock model interpolation and symmetry breaking in O(2) models

Leon Hostetler <sup>1</sup>, Ryo Sakai <sup>2</sup>, Jin Zhang <sup>2</sup>, Judah Unmuth-Yockey <sup>3</sup>, Alexei Bazavov <sup>1</sup>, and Yannick Meurice <sup>2</sup>

<sup>1</sup> Michigan State University

<sup>2</sup>University of Iowa

<sup>3</sup>Fermilab

November 2, 2020 QuLAT Collaboration

#### Outline

- 1 The *q*-state clock model
  - Energy density and specific heat
  - Phase diagram
- 2 The gamma model
- $oldsymbol{3}$  The toy clock model with fractional q
  - Energy density and specific heat
  - Validating TRG
  - ullet TRG results at large volume and large eta
  - Large and small  $\beta$  limits
  - Summary

#### Motivation

- One challenge of mapping quantum field theories to quantum simulators is dealing with the infinite Hilbert spaces
- One possibility:
  - Truncate the "spin" states
  - Map the system to a quantum simulator. See for example arXiv: 1403.5238, 1503.08354, and 1803.11166
  - Tensor renormalization group (TRG) methods can be used to study the effect of these truncations
- Or from the other direction:
  - Start with a model that is already truncated, such as the classical q-state clock model
  - Construct a quantum Hamiltonian and take time-continuum limit
  - Map the system to a quantum simulator
  - Learn from this to help us move on to more challenging models

## The q-state clock model

• For the *q*-state clock model<sup>1</sup>, the energy function is

$$E = -J\sum_{x,\mu}\cos\left(\varphi_{x+\hat{\mu}} - \varphi_{x}\right)$$

The spins reside on lattice sites and take on values

$$\varphi \in \left\{0, \frac{2\pi}{q}, \frac{4\pi}{q}, \cdots, \frac{2\pi(q-1)}{q}\right\}$$

- ullet This model has a discrete  $\mathbb{Z}_q$  symmetry and interpolates between the Ising and XY models
  - **1** For q = 2, it is equivalent to Ising model
  - ② For q = 3, it is equivalent to the *standard* 3-state Potts model
  - **3** For q = 4, it is equivalent to two Ising models
  - **1** For  $5 \le q < \infty$ , it has two phase transitions
  - **5** For  $q \to \infty$ , it becomes the continuous XY model

 $^1$ Also called the "planar Potts model", the "vector Potts=model", or the " $\mathbb{Z}_q$  model",  $\sim$ 

## Clock model energy density and specific heat



# Clock model phase diagram



6/26

#### Overview

- 1 The q-state clock model
  - Energy density and specific heat
  - Phase diagram
- 2 The gamma model
- $\bigcirc$  The toy clock model with fractional q
  - Energy density and specific heat
  - Validating TRG
  - ullet TRG results at large volume and large eta
  - Large and small  $\beta$  limits
  - Summary

## The gamma model

• We consider now the energy function

$$E = -J\sum_{x,\mu}\cos\left(\varphi_{x+\hat{\mu}} - \varphi_{x}\right) - \gamma\sum_{x}\cos\left(q\varphi_{x}\right)$$

• The spins reside on lattice sites and take on values

$$\varphi \in [0, 2\pi)$$

- Note:
  - When  $\gamma = 0$ , this is the XY model
  - ▶ When  $\gamma \to \infty$  and  $q \in \mathbb{Z}$ , this becomes the clock model
- By slowly turning on  $\gamma$ , we can explore the effect of breaking the O(2) symmetry
- We no longer require  $q \in \mathbb{Z}$ , so this allows us to consider the "clock model" with fractional q
- We haven't studied this specific form of the model yet. We have studied a very similar model with  $q\Delta\varphi$  in the second cosine. Those results are in the appendix if you're interested

#### Overview

- 1 The q-state clock model
  - Energy density and specific heat
  - Phase diagram
- 2 The gamma model
- $\bigcirc$  The toy clock model with fractional q
  - Energy density and specific heat
  - Validating TRG
  - ullet TRG results at large volume and large eta
  - ullet Large and small eta limits
  - Summary

## The toy clock model with fractional q

We return to the clock model

$$E = -J\sum_{x,\mu}\cos\left(\varphi_{x+\hat{\mu}} - \varphi_x\right)$$

 But now q is not necessarily an integer and the spins take on the values

$$\varphi \in \left\{0, \frac{2\pi}{q}, \frac{4\pi}{q}, \cdots, \frac{2\pi \lfloor q \rfloor}{q}\right\}$$

• When  $q \in \mathbb{Z}$ , the result is the ordinary q-state clock model with  $\mathbb{Z}_q$  symmetry. When  $q \notin \mathbb{Z}$ , the  $\mathbb{Z}_q$  symmetry is broken. For example:





#### Monte Carlo Results

- Monte Carlo approach is well understood and reliable
- ullet However, for this model, large eta and large volumes are computationally intensive
- On the next few slides we show some quick (i.e. low statistics) results done on a small 4x4 lattice
- Error bars are not shown and the results show some fluctuation at large  $\beta$  due to insufficient statistics, but the curves give a good qualitative picture<sup>2</sup>. Think of these as *preliminary* plots
- ullet Later, we harness TRG (tensor renormalization group) to explore large eta and large volume

 $^2$ We've verified this by performing a number of high statistics runs with error analysis  $\odot$ 

Leon Hostetler (MSU) Clock Model November 2, 2020 11 / 26

## Toy Model: $3.1 \le q \le 4.0$



## Toy Model: $4.1 \le q \le 5.0$



## Toy Model: $5.1 \le q \le 6.0$



#### **TRG**

- Ryo Sakai is able to study this toy model using tensor renormalization group (TRG) approach
- ullet The benefit over Monte Carlo (MC) is that TRG can go to much larger eta and much larger volume
- ullet We start by validating TRG by comparing it with MC at small eta and small volumes
- ullet Then we show some of the large eta and large volume results

15/26





















#### Small- $\beta$ limit

- For non-integer q, the energy is offset from zero at  $\beta=0$ , due to the broken  $\mathbb Z$  symmetry but we understand this
- We can calculate exactly  $E(\beta = 0)$
- Going further, Jin Zhang has calculated the small- $\beta$  expansion:

$$Z = I_0^{2N}(\beta) \Big[ 1 + 4NC_1^2 t_1(\beta) + \cdots \Big]$$

where

$$C_k = rac{1}{\lceil q 
ceil} {
m Re} \left( rac{1 - {
m e}^{2\pi i k \lceil q 
ceil/q}}{1 - {
m e}^{2\pi i k/q}} 
ight), \qquad t_n(eta) = rac{I_n(eta)}{I_0(eta)}$$



#### Large- $\beta$ limit

For q = 4.9, partition function in order of increasing energy is

$$Z \simeq \frac{1}{\lceil q \rceil} e^{2N\beta} \left[ 1 + \frac{2N}{\lceil q \rceil} e^{-4\epsilon\beta} + \frac{8N}{\lceil q \rceil} e^{-4\tilde{\epsilon}\beta} + \frac{8N}{\lceil q \rceil} e^{-6\epsilon\beta} + \frac{32N}{\lceil q \rceil} e^{-6\tilde{\epsilon}\beta} + \cdots \right],$$

where

$$\epsilon = 1 - \cos\left(2\pi - 2\pi \cdot \frac{4}{4.9}\right), \qquad \tilde{\epsilon} = 1 - \cos\left(\frac{2\pi}{4.9}\right).$$



□ > 4 = > 4 = > 로 | = 40 < ○</p>

#### Quantum Hamiltonian

 Furthermore, Jin has developed a quantum Hamiltonian of this model, and has identified the second critical point (i.e. the Ising-like peak in this model)

$$eta_c = rac{\ln(1+\sqrt{2})}{1-\cos\psi}, \qquad ext{where} \qquad \psi = rac{2\pi(\lceil q 
ceil - 1)}{q}$$

- Works well when the small angle is sufficiently small
- So we come full circle in a sense
- With Jin's machinery, we hope to be able to put this model on a quantum simulator and study one of its interesting features

## Summary

- Putting a clock model on a quantum simulator could be a good step in helping us understand how to eventually put quantum fields on a simulator
- This model with fractional q has some interesting features that might benefit from exploration on such a simulator
- However, we still have a little work to do
  - We want to study the magnetization and susceptibility and do proper finite size scaling
  - We want to enumerate all the states for a very small lattice and understand the exact cause of some of the features

THE END

#### Overview

- 4 Toy Model
  - Energy Density and Specific Heat
  - High Temperature Expansion
  - Low Temperature Expansion
  - Validating TRG
- 5 Toy Model with Large k
- 6 Gamma Model with  $q \Delta \varphi$ 
  - Checking Final States
  - Energy Density and Specific Heat
  - Acceptance Rate
  - Angular Distribution
  - Energy Density and Specific Heat

# Toy Model: $1.1 \le q \le 2.0$



# Toy Model: $2.1 \le q \le 3.0$



## Toy Model: High temperature expansion



## Toy Model: Low temperature expansion

For q = 4.9, partition function in order of increasing energy is

$$Z \simeq \frac{1}{\lceil q \rceil} e^{2N\beta} \left[ 1 + \frac{2N}{\lceil q \rceil} e^{-4\epsilon\beta} + \frac{8N}{\lceil q \rceil} e^{-4\tilde{\epsilon}\beta} + \frac{8N}{\lceil q \rceil} e^{-6\epsilon\beta} + \frac{32N}{\lceil q \rceil} e^{-6\tilde{\epsilon}\beta} + \cdots \right],$$

where

$$\epsilon = 1 - \cos\left(2\pi - 2\pi \cdot \frac{4}{4.9}\right), \qquad \tilde{\epsilon} = 1 - \cos\left(\frac{2\pi}{4.9}\right).$$



□ ▶ 《토 ▶ 《토 ▶ 토 | 트 ♥ ९ ○









## Validating TRG: q = 5.0



#### Overview

- 4 Toy Model
  - Energy Density and Specific Heat
  - High Temperature Expansion
  - Low Temperature Expansion
  - Validating TRG
- Toy Model with Large k
- $\bigcirc$  Gamma Model with  $q \Delta \varphi$ 
  - Checking Final States
  - Energy Density and Specific Heat
  - Acceptance Rate
  - Angular Distribution
  - Energy Density and Specific Heat



## Toy Model with Large k

We return to the energy function of the q-state clock model

$$E = -J\sum_{x,\mu}\cos(\varphi_{x+\hat{\mu}} - \varphi_x),$$

where  $\varphi_{\mathsf{x}} \in 2\pi k/q$  with  $q \in \mathbb{Z}$  and  $k = 0, 1, \dots, q-1$ 

- ullet But now, we let  $q\in\mathbb{R}$  and  $k=0,1,\ldots$
- Note: k is no longer bounded above by  $\lceil q \rceil$ . Now we can let k go sufficiently large to recover periodicity

## Toy Model with Large k



### Toy Model with Large k



#### Overview

- 4 Toy Model
  - Energy Density and Specific Heat
  - High Temperature Expansion
  - Low Temperature Expansion
  - Validating TRG
- 5 Toy Model with Large k
- **6** Gamma Model with  $q \Delta \varphi$ 
  - Checking Final States
  - Energy Density and Specific Heat
  - Acceptance Rate
  - Angular Distribution
  - Energy Density and Specific Heat

#### The Model

XY model has energy function

$$E_{XY} = -J \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x), \tag{1}$$

where  $\varphi_{\mathsf{x}} \in [-\pi,\pi)$  and typically J=1

As proposed by Judah, we add a new term

$$E = -J\sum_{x,\mu}\cos(\varphi_{x+\hat{\mu}} - \varphi_x) - \gamma\sum_{x,\mu}\cos(q\left[\varphi_{x+\hat{\mu}} - \varphi_x\right]), \quad (2)$$

- ullet When  $\gamma o \infty$ , this model becomes the *q*-state clock model
- Here, one should be able to simulate also fractional q
- I have modified Berg's XY Metropolis code to evolve the system using
   (2)
- ullet To get the properly normalized energy, I measure the energy using (1)

# Checking Final States for q = 2.0

- Here, we run simulations (using random starts) on  $16 \times 16$  lattices at q=2.0 and  $\beta=0.1$  (i.e. in the disordered phase) with various  $\gamma$  and look at the final state after  $2^{20}$  Metropolis sweeps
- In the top row, we have  $\gamma = 0.0$ , which reduces to the XY model
- In the middle row, we have  $\gamma=50.0$ . We see the model beginning to favor 2 directions—approximating the 2-state clock model
- In the bottom row, we have  $\gamma = 500.0$



# Checking Final States for q = 5.0

- Here, we run simulations (using random starts) on  $16 \times 16$  lattices at q=5.0 and  $\beta=0.1$  (i.e. in the disordered phase) with various  $\gamma$  and look at the final state after  $2^{20}$  Metropolis sweeps
- In the top row, we have  $\gamma = 0.0$ , which reduces to the XY model
- In the middle row, we have  $\gamma=50.0$ . We see the model beginning to favor 5 directions—approximating the 5-state clock model
- In the bottom row, we have  $\gamma = 500.0$



## Energy Density and Specific Heat for q = 2.0





= 1= 0a0

- We compare energy density (left) and specific heat (right) for the q=2.0 model on 4x4 lattices at different  $\gamma$  with exact values
- Bottom plots show the differences from exact
- $\bullet$  Anomalous results at large  $\beta$  for the  $\gamma=500.0$  case are due to insufficient equilibration

Leon Hostetler (MSU) Clock Model November 2, 2020 20 / 25

# Energy Density and Specific Heat for q = 4.0



- We compare energy density (left) and specific heat (right) for the q=4.0 model on 4x4 lattices at different  $\gamma$  with exact values
- Bottom plots show the differences from exact

# Energy Density and Specific Heat for q = 5.0



- ullet We compare energy density (left) and specific heat (right) for the q=5.0 model on 4x4 lattices at different  $\gamma$  with standard MC clock model
- Bottom plots show the differences from standard MC clock model since we don't have exact results for the 5-state clock model

# Acceptance Rate



- ullet Here, we show the dependence of the Metropolis acceptance rate on eta and  $\gamma$  for the clock model with q=2.0 on a 4x4 lattice
- ullet As eta is increased, acceptance drops significantly
- ullet The effect is even worse as  $\gamma$  is increased.
- This is a problem (since autocorrelation becomes very large) that must be resolved before we can really look at lattices larger than 4x4

# Fractional q: Angular distribution of final state spins



- Here we see how the angular distribution of the final lattice state evolves as q is increased
- We look at the final lattice state after  $2^{20}$  Metropolis sweeps on  $16 \times 16$  lattices with  $\beta = 0.1$  and  $\gamma = 500.0$
- ullet The top row, from left to right, has q=4.0,4.1,4.2
- The bottom row, from left to right, has q = 4.8, 4.9, 5.0

### Fractional q: Energy Density and Specific Heat

q-state Clock Model on 4x4 lattice with  $\gamma = 500.0$ 

