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Motivation

@ One challenge of mapping quantum field theories to quantum
simulators is dealing with the infinite Hilbert spaces
@ One possibility:
@ Truncate the “spin” states
© Map the system to a quantum simulator. See for example arXiv:
1403.5238, 1503.08354, and 1803.11166
© Tensor renormalization group (TRG) methods can be used to study the
effect of these truncations
@ Or from the other direction:
@ Start with a model that is already truncated, such as the classical
g-state clock model
@ Construct a quantum Hamiltonian and take time-continuum limit
© Map the system to a quantum simulator
@ Learn from this to help us move on to more challenging models
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The g-state clock model

@ For the g-state clock model!, the energy function is

E= —JZ oS (Pxtp — ¥x)
X5

@ The spins reside on lattice sites and take on values

pefo b . 2o
g’ q q

@ This model has a discrete Zg, symmetry and interpolates between the
Ising and XY models
@ For g =2, it is equivalent to Ising model
@ For g = 3, it is equivalent to the standard 3-state Potts model
© For g =4, it is equivalent to two Ising models
@ For 5 < g < o0, it has two phase transitions
@ For g — oo, it becomes the continuous XY model

'Also called the “planar Potts model”, the “vector Potts-model”, or-the “Z, model’-
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Clock model energy density and specific heat

g-state Clock Model on 32x32 lattice, energy density and specific heat
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Clock model phase diagram
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Overview

© The gamma model
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The gamma model

@ We consider now the energy function

E=—J) cos(pxrp—x) =7 cos(qp)

X1

@ The spins reside on lattice sites and take on values
¢ €[0,2m)

o Note:
» When v = 0, this is the XY model
» When v — oo and g € Z, this becomes the clock model
@ By slowly turning on -y, we can explore the effect of breaking the O(2)
symmetry
@ We no longer require g € Z, so this allows us to consider the “clock
model” with fractional g
@ We haven't studied this specific form of the model yet. We have
studied a very similar model with gA¢ in the second cosine. Those
results are in the appendix if you're interested
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Overview

© The toy clock model with fractional g
@ Energy density and specific heat
@ Validating TRG
@ TRG results at large volume and large 3
@ Large and small 3 limits

@ Summary
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The toy clock model with fractional g
@ We return to the clock model
E = —JZcos (x+i — ©x)
Xy
@ But now g is not necessarily an integer and the spins take on the

values
QDE {07271-’47()'” 727TLqJ}
qa 4q q
@ When g € Z, the result is the ordinary g-state clock model with Zj

symmetry. When q ¢ Z, the Z, symmetry is broken. For example:

qg=4.0 qg=45
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Monte Carlo Results

@ Monte Carlo approach is well understood and reliable

@ However, for this model, large 5 and large volumes are
computationally intensive

@ On the next few slides we show some quick (i.e. low statistics) results
done on a small 4x4 lattice

@ Error bars are not shown and the results show some fluctuation at
large B due to insufficient statistics, but the curves give a good
qualitative picture?. Think of these as preliminary plots

o Later, we harness TRG (tensor renormalization group) to explore large
5 and large volume

2We've verified this by performing a number of high statistics runs with error analysis
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Toy Model: 3.1 < g <4.0

Toy Clock Model with Fractional g, Energy Density
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Toy Model: 4.1 < g<5.0
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Toy Model: 5.1 < g <6.0
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TRG

@ Ryo Sakai is able to study this toy model using tensor renormalization
group (TRG) approach

@ The benefit over Monte Carlo (MC) is that TRG can go to much
larger 5 and much larger volume

@ We start by validating TRG by comparing it with MC at small 3 and
small volumes

@ Then we show some of the large 8 and large volume results
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Validating TRG: ¢ = 4.0

MC vs TRG: Specific heat for ¢ = 4.0
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Validating TRG: g = 4.5

MC vs TRG: Specific heat for ¢ = 4.5
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Validating TRG: ¢ = 4.9

MC vs TRG: Specific heat for ¢ = 4.9
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TRG results at large volume and large 3
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TRG results at large volume and large 3
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TRG results at large volume and large 3
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TRG results at large volume and large 3
g=>52 g=>54
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Small-5 limit

@ For non-integer g, the energy is offset from zero at § = 0, due to the

broken Z symmetry but we understand this
e We can calculate exactly E(S = 0)
@ Going further, Jin Zhang has calculated the small-3 expansion:

Z = BB |1+ 4NCEu(B) + -

Ci = —Re (1 ¥ ezwc{w) L a@ =20

where

1 — e2mik/q

Small-j3 expansion
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Large-3 limit
For g = 4.9, partition function in order of increasing energy is

7~ L 2NB [1+ﬂ —4ep | S0 8N e—4e8 4 N 8N e6e8 4 22NV 32N

fq1© [q] Tq] Tal Tq]

where
e=1—cos|2m —2m - 4 € =1—cos 27
4.9 49
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Quantum Hamiltonian

@ Furthermore, Jin has developed a quantum Hamiltonian of this
model, and has identified the second critical point (i.e. the Ising-like
peak in this model)

/BC — In(]‘ + \/i)’ where 1)[) — 27T( [q-| B 1)
1 — cos q

@ Works well when the small angle is sufficiently small
@ So we come full circle in a sense

@ With Jin's machinery, we hope to be able to put this model on a
quantum simulator and study one of its interesting features
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Summary

@ Putting a clock model on a quantum simulator could be a good step
in helping us understand how to eventually put quantum fields on a
simulator

@ This model with fractional g has some interesting features that might
benefit from exploration on such a simulator
@ However, we still have a little work to do

» We want to study the magnetization and susceptibility and do proper
finite size scaling

» We want to enumerate all the states for a very small lattice and
understand the exact cause of some of the features
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THE END
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Overview

@ Toy Model
@ Energy Density and Specific Heat
@ High Temperature Expansion

@ Low Temperature Expansion

@ Validating TRG
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Toy Model: 1.1 < g <20

-05

18
16
14
12

0.8
06
0.4
0.2

Leon Hostetler (MS

Toy Clock Model with Fractional g, Energy Density

05 1 15

Toy Clock Model with Fractional g, Specific Heat

05 1 15

Clock Model

q=20

q=20

[T




Toy Model: 2.1 < g <3.0
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Toy Model: High temperature expansion

Toy clock model, high temperature approximation
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Toy Model: Low temperature expansion
For g = 4.9, partition function in order of increasing energy is

fq1©

where
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Validating TRG: ¢ = 4.0

MC vs TRG: Specific heat for ¢ = 4.0
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Validating TRG: g = 4.1

MC vs TRG: Specific heat for ¢ = 4.1
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Validating TRG: g = 4.5

MC vs TRG: Specific heat for ¢ = 4.5
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Validating TRG: ¢ = 4.9

MC vs TRG: Specific heat for ¢ = 4.9
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Validating TRG: ¢ = 5.0

MC vs TRG: Specific heat for ¢ = 5.0
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Overview

e Toy Model with Large k
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Toy Model with Large k

@ We return to the energy function of the g-state clock model

E— Y coslurn— ).
X,
where ¢, € 2k/q with g € Z and k=0,1,...,9—1
@ But now, welet g€ Rand k=0,1,...

e Note: k is no longer bounded above by [g]. Now we can let k go
sufficiently large to recover periodicity
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Toy Model with Large k

Toy Clock Model with Fractional q, Energy Density
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Toy Model with Large k

Toy Clock Model with Fractional g, Energy Density
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Overview

© Gamma Model with g Ay
@ Checking Final States
@ Energy Density and Specific Heat
@ Acceptance Rate
@ Angular Distribution

@ Energy Density and Specific Heat
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The Model

@ XY model has energy function

Exy = —JZ cos(Px+p — ¥x); (1)
X,
where ¢y € [—m,7) and typically J =1
@ As proposed by Judah, we add a new term

E= _JZ Cos(¢x+ﬁ - (PX) -7 Z Cos (CI [(PXJrﬂ - (Px]) ) (2)
X, [h X1

® When v — oo, this model becomes the g-state clock model

@ Here, one should be able to simulate also fractional g

@ | have modified Berg's XY Metropolis code to evolve the system using
(2)

@ To get the properly normalized energy, | measure the energy using (1)
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Checking Final States for g = 2.0

@ Here, we run simulations (using
random starts) on 16x16 lattices
at g =2.0and f=0.1 (i.e. in
the disordered phase) with
various v and look at the final
state after 220 Metropolis
sweeps

@ In the top row, we have v = 0.0,
which reduces to the XY model

@ In the middle row, we have
v = 50.0. We see the model
beginning to favor 2
directions—approximating the
2-state clock model

@ In the bottom row, we have
~ = 500.0
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Checking Final States for ¢ = 5.0

@ Here, we run simulations (using

random starts) on 16x16 lattices 11—/ %
. . LN /(=0 AN
at g =>5.0and 5 =0.1 (i.e. in é&é{/ﬁ]@%’g’
the disordered phase) with ;??:,%\ff}}@ . o
. . ISL=71 Il /
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20 : AL =
state after 2°° Metropolis SNV
sweeps AN L
e VP =
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NN\ S
. —— A\ \—
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Energy Density and Specific Heat for g = 2.0

Specific Heat, Exact vs. MC with ¢ — 2.0

Energy Density, Exact vs. MC with ¢ — 2.0
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@ We compare energy density (left) and specific heat (right) for the
g = 2.0 model on 4x4 lattices at different « with exact values

@ Bottom plots show the differences from exact

@ Anomalous results at large 3 for the v = 500.0 case are due to

insufficient equilibration
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Energy Density and Specific Heat for g = 4.0
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@ We compare energy density (left) and specific heat (right) for the
q = 4.0 model on 4x4 lattices at different v with exact values

@ Bottom plots show the differences from exact

Leon Hostetler (MSU)

Clock Model

November 2, 2020 21/25



Energy Density and Specific Heat for g = 5.0

Energy Density, Regular MC vs. MC with ¢ = 5.0 Specific Heat, Regular MC vs. MC with ¢ = 5.0
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o We compare energy density (left) and specific heat (right) for the
g = 5.0 model on 4x4 lattices at different « with standard MC clock
model

@ Bottom plots show the differences from standard MC clock model
since we don't have exact results for the 5-state clock model
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Acceptance Rate

g-state clock model with g = 2.0
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@ Here, we show the dependence of the Metropolis acceptance rate on
B and ~y for the clock model with g = 2.0 on a 4x4 lattice

As (3 is increased, acceptance drops significantly

The effect is even worse as 7 is increased.

This is a problem (since autocorrelation becomes very large) that
must be resolved before we can really look at lattices larger than 4x4
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Fractional g: Angular distribution of final state spins
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@ Here we see how the angular distribution of the final lattice state
evolves as ¢ is increased

@ We look at the final lattice state after 22 Metropolis sweeps on
16x16 lattices with 8 = 0.1 and v = 500.0

@ The top row, from left to right, has g = 4.0,4.1,4.2

@ The bottom row, from left to right, has ¢ = 4.8,4.9,5.0
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Fractional g: Energy Density and Specific Heat

g-state Clock Model on 4x4 lattice with y = 500.0
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