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Motivation

One challenge of mapping quantum field theories to quantum
simulators is dealing with the infinite Hilbert spaces

One possibility:
1 Truncate the “spin” states
2 Map the system to a quantum simulator. See for example arXiv:

1403.5238, 1503.08354, and 1803.11166
3 Tensor renormalization group (TRG) methods can be used to study the

effect of these truncations

Or from the other direction:
1 Start with a model that is already truncated, such as the classical

q-state clock model
2 Construct a quantum Hamiltonian and take time-continuum limit
3 Map the system to a quantum simulator
4 Learn from this to help us move on to more challenging models
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The q-state clock model

For the q-state clock model1, the energy function is

E = −J
∑
x ,µ

cos (ϕx+µ̂ − ϕx)

The spins reside on lattice sites and take on values

ϕ ∈
{

0,
2π

q
,

4π

q
, · · · , 2π(q − 1)

q

}
This model has a discrete Zq symmetry and interpolates between the
Ising and XY models

1 For q = 2, it is equivalent to Ising model
2 For q = 3, it is equivalent to the standard 3-state Potts model
3 For q = 4, it is equivalent to two Ising models
4 For 5 ≤ q <∞, it has two phase transitions
5 For q →∞, it becomes the continuous XY model

1Also called the “planar Potts model”, the “vector Potts model”, or the “Zq model”.
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Clock model energy density and specific heat

Leon Hostetler (MSU) Clock Model November 2, 2020 5 / 26



Clock model phase diagram
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The gamma model
We consider now the energy function

E = −J
∑
x ,µ

cos (ϕx+µ̂ − ϕx)− γ
∑
x

cos (qϕx)

The spins reside on lattice sites and take on values

ϕ ∈ [0, 2π)

Note:
I When γ = 0, this is the XY model
I When γ →∞ and q ∈ Z, this becomes the clock model

By slowly turning on γ, we can explore the effect of breaking the O(2)
symmetry

We no longer require q ∈ Z, so this allows us to consider the “clock
model” with fractional q

We haven’t studied this specific form of the model yet. We have
studied a very similar model with q∆ϕ in the second cosine. Those
results are in the appendix if you’re interested
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The toy clock model with fractional q
We return to the clock model

E = −J
∑
x ,µ

cos (ϕx+µ̂ − ϕx)

But now q is not necessarily an integer and the spins take on the
values

ϕ ∈
{

0,
2π

q
,

4π

q
, · · · , 2πbqc

q

}
When q ∈ Z, the result is the ordinary q-state clock model with Zq

symmetry. When q /∈ Z, the Zq symmetry is broken. For example:

q = 4.0

90◦90◦

90◦ 90◦

q = 4.5

80◦80◦

80◦
80◦

40◦
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Monte Carlo Results

Monte Carlo approach is well understood and reliable

However, for this model, large β and large volumes are
computationally intensive

On the next few slides we show some quick (i.e. low statistics) results
done on a small 4x4 lattice

Error bars are not shown and the results show some fluctuation at
large β due to insufficient statistics, but the curves give a good
qualitative picture2. Think of these as preliminary plots

Later, we harness TRG (tensor renormalization group) to explore large
β and large volume

2We’ve verified this by performing a number of high statistics runs with error analysis
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Toy Model: 3.1 ≤ q ≤ 4.0
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Toy Model: 4.1 ≤ q ≤ 5.0
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Toy Model: 5.1 ≤ q ≤ 6.0
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TRG

Ryo Sakai is able to study this toy model using tensor renormalization
group (TRG) approach

The benefit over Monte Carlo (MC) is that TRG can go to much
larger β and much larger volume

We start by validating TRG by comparing it with MC at small β and
small volumes

Then we show some of the large β and large volume results
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Validating TRG: q = 4.0
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Validating TRG: q = 4.5

Leon Hostetler (MSU) Clock Model November 2, 2020 17 / 26



Validating TRG: q = 4.9
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TRG results at large volume and large β
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TRG results at large volume and large β
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TRG results at large volume and large β
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TRG results at large volume and large β
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Small-β limit
For non-integer q, the energy is offset from zero at β = 0, due to the
broken Z symmetry but we understand this
We can calculate exactly E (β = 0)
Going further, Jin Zhang has calculated the small-β expansion:

Z = I 2N0 (β)
[
1 + 4NC 2

1 t1(β) + · · ·
]

where

Ck =
1

dqe
Re

(
1− e2πikdqe/q

1− e2πik/q

)
, tn(β) =

In(β)

I0(β)
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Large-β limit
For q = 4.9, partition function in order of increasing energy is

Z ' 1

dqe
e2Nβ

[
1 +

2N

dqe
e−4εβ +

8N

dqe
e−4ε̃β +

8N

dqe
e−6εβ +

32N

dqe
e−6ε̃β + · · ·

]
,

where

ε = 1− cos

(
2π − 2π · 4

4.9

)
, ε̃ = 1− cos

(
2π

4.9

)
.
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Quantum Hamiltonian

Furthermore, Jin has developed a quantum Hamiltonian of this
model, and has identified the second critical point (i.e. the Ising-like
peak in this model)

βc =
ln(1 +

√
2)

1− cosψ
, where ψ =

2π(dqe − 1)

q

Works well when the small angle is sufficiently small

So we come full circle in a sense

With Jin’s machinery, we hope to be able to put this model on a
quantum simulator and study one of its interesting features
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Summary

Putting a clock model on a quantum simulator could be a good step
in helping us understand how to eventually put quantum fields on a
simulator

This model with fractional q has some interesting features that might
benefit from exploration on such a simulator

However, we still have a little work to do
I We want to study the magnetization and susceptibility and do proper

finite size scaling
I We want to enumerate all the states for a very small lattice and

understand the exact cause of some of the features
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THE END
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Toy Model: 1.1 ≤ q ≤ 2.0

Leon Hostetler (MSU) Clock Model November 2, 2020 3 / 25



Toy Model: 2.1 ≤ q ≤ 3.0
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Toy Model: High temperature expansion
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Toy Model: Low temperature expansion
For q = 4.9, partition function in order of increasing energy is

Z ' 1

dqe
e2Nβ

[
1 +

2N

dqe
e−4εβ +

8N

dqe
e−4ε̃β +

8N

dqe
e−6εβ +

32N

dqe
e−6ε̃β + · · ·

]
,

where

ε = 1− cos

(
2π − 2π · 4

4.9

)
, ε̃ = 1− cos

(
2π

4.9

)
.
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Validating TRG: q = 4.0
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Validating TRG: q = 4.1
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Validating TRG: q = 4.5
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Validating TRG: q = 4.9
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Validating TRG: q = 5.0
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Toy Model with Large k

We return to the energy function of the q-state clock model

E = −J
∑
x ,µ

cos(ϕx+µ̂ − ϕx),

where ϕx ∈ 2πk/q with q ∈ Z and k = 0, 1, . . . , q − 1

But now, we let q ∈ R and k = 0, 1, . . .

Note: k is no longer bounded above by dqe. Now we can let k go
sufficiently large to recover periodicity
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Toy Model with Large k
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Toy Model with Large k
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The Model

XY model has energy function

EXY = −J
∑
x ,µ

cos(ϕx+µ̂ − ϕx), (1)

where ϕx ∈ [−π, π) and typically J = 1

As proposed by Judah, we add a new term

E = −J
∑
x ,µ

cos(ϕx+µ̂ − ϕx)− γ
∑
x ,µ

cos (q [ϕx+µ̂ − ϕx ]) , (2)

When γ →∞, this model becomes the q-state clock model

Here, one should be able to simulate also fractional q

I have modified Berg’s XY Metropolis code to evolve the system using
(2)

To get the properly normalized energy, I measure the energy using (1)
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Checking Final States for q = 2.0

Here, we run simulations (using
random starts) on 16x16 lattices
at q = 2.0 and β = 0.1 (i.e. in
the disordered phase) with
various γ and look at the final
state after 220 Metropolis
sweeps

In the top row, we have γ = 0.0,
which reduces to the XY model

In the middle row, we have
γ = 50.0. We see the model
beginning to favor 2
directions—approximating the
2-state clock model

In the bottom row, we have
γ = 500.0
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Checking Final States for q = 5.0

Here, we run simulations (using
random starts) on 16x16 lattices
at q = 5.0 and β = 0.1 (i.e. in
the disordered phase) with
various γ and look at the final
state after 220 Metropolis
sweeps

In the top row, we have γ = 0.0,
which reduces to the XY model

In the middle row, we have
γ = 50.0. We see the model
beginning to favor 5
directions—approximating the
5-state clock model

In the bottom row, we have
γ = 500.0
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Energy Density and Specific Heat for q = 2.0

We compare energy density (left) and specific heat (right) for the
q = 2.0 model on 4x4 lattices at different γ with exact values

Bottom plots show the differences from exact

Anomalous results at large β for the γ = 500.0 case are due to
insufficient equilibration
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Energy Density and Specific Heat for q = 4.0

We compare energy density (left) and specific heat (right) for the
q = 4.0 model on 4x4 lattices at different γ with exact values

Bottom plots show the differences from exact
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Energy Density and Specific Heat for q = 5.0

We compare energy density (left) and specific heat (right) for the
q = 5.0 model on 4x4 lattices at different γ with standard MC clock
model

Bottom plots show the differences from standard MC clock model
since we don’t have exact results for the 5-state clock model
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Acceptance Rate

Here, we show the dependence of the Metropolis acceptance rate on
β and γ for the clock model with q = 2.0 on a 4x4 lattice

As β is increased, acceptance drops significantly

The effect is even worse as γ is increased.

This is a problem (since autocorrelation becomes very large) that
must be resolved before we can really look at lattices larger than 4x4
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Fractional q: Angular distribution of final state spins

Here we see how the angular distribution of the final lattice state
evolves as q is increased

We look at the final lattice state after 220 Metropolis sweeps on
16x16 lattices with β = 0.1 and γ = 500.0

The top row, from left to right, has q = 4.0, 4.1, 4.2

The bottom row, from left to right, has q = 4.8, 4.9, 5.0
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Fractional q: Energy Density and Specific Heat
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